

Welcome to OpenAPS’s documentation!

This documentation supports a self-driven Do-It-Yourself (DIY) implementation of an artificial pancreas based on the OpenAPS reference design. By proceeding to use these tools or any piece within, you agree to the copyright [https://github.com/openaps/docs/blob/master/license.txt] for more information; and the full README here [https://github.com/openaps/docs/blob/master/README.md] and release any contributors from liability, and assume full responsibility for all of your actions and outcomes related to usage of these tools or ideas.

Note: We do not recommend using a PDF version of this guide. The docs are updated continuously, and with a PDF, you will not get the freshest real-time edits. Be aware if you download a PDF that when you have Internet connectivity, we recommend instead having the docs pulled up in an Internet browser so you can refresh. This is especially true if you are working on a setup over the course of multiple days.

Note

A Note on DIY and the “Open” Part of OpenAPS

This is a set of development tools to support a self-driven DIY implementation. Any person choosing to use these tools is solely responsible for testing and implementing these tools independently or together as a system.

The DIY part of OpenAPS is important. While formal training or experience as an engineer or a developer is not a prerequisite, a growth mindset is required to learn to work with the “building blocks” that will help you develop your OpenAPS instance. Remember as you consider this project that this is not a “set and forget” system; an OpenAPS implementation requires diligent and consistent testing and monitoring to ensure each piece of the system is monitoring, predicting, and controlling as desired. The performance and quality of your system lies solely with you.

This community of contributors believes in “paying it forward,” and individuals who are implementing these tools are asked to contribute by asking questions, helping improve documentation, and contributing in other ways. Have questions? Hop into Gitter [https://gitter.im/nightscout/intend-to-bolus] and ask anytime!

Danger

IMPORTANT SAFETY NOTICE

The foundation of OpenAPS safety features discussed in this documentation are built on the safety features of the hardware used to build your system. It is critically important that you only use a tested, fully functioning FDA or CE approved insulin pump and CGM for closing an automated insulin dosing loop. Hardware or software modifications to these components can cause unexpected insulin dosing, causing significant risk to the user. If you find or get offered broken, modified or self-made insulin pumps or CGM receivers, do not use these for creating an OpenAPS system.

Additionally, it is equally important to only use original supplies such as inserters, cannulas and insulin containers approved by the manufacturer for use with your pump or CGM. Using untested or modified supplies can cause CGM inaccuracy and insulin dosing errors. Insulin is highly dangerous when misdosed - please do not play with your life by hacking with your supplies.

Understanding OpenAPS (Overview)

	How OpenAPS works
	How does your closed loop gather data?

	But how does it do everything it needs to do to gather data and make decisions and tell the pump what to do?

	How this guide works/overview of steps
	What you’ll see in this guide

	Where to go for help
	Read the documentation!

	Slack

	Gitter

	Facebook

	Issues on GitHub

	Other online forums

	Google Group - everyone is welcome to join!

Gear Up

	Hardware overview
	Notes about deprecated hardware setups

	Compatible Pumps
	How to check pump firmware (check for absence of PC Connect)

	Why do I need a certain pump firmware?

	Can I downgrade my pump firmware?

	Tips for finding a compatible pump

	Word of warning: Pump repairs rendering pumps useless for looping

	Tips for longer battery life

	Compatible CGMs
	Using a Dexcom CGM

	Using the Medtronic CGM

	Pulling CGM data from the cloud

	Offline looping options

	Get your rig parts
	Hardware information for Pi-based setups with the Explorer HAT

	Hardware information for Pi-based setups with RFM69HCW (experimental)

	Hardware information for Pi-based setups with the Adafruit RHM69HCW Bonnet

	Hardware information for Pi-based setups with rewired TI-stick

	Hardware information for Intel Edison-based setups

While You Wait For Gear

	Collect your data & prepare
	Practice good CGM habits

	Use your gear

	Make Your First PR

	Setting up Nightscout
	Nightscout Introduction

	Nightscout Setup with Heroku

	Nightscout Migrations

	Nightscout Troubleshooting and FAQ

	Understand your rig
	Pi HAT rig

	Edison/Explorer Board rig

	Entering carbs & boluses
	Doing boluses

	Entering carbs into OpenAPS

	How OpenAPS makes decisions
	Basic diabetes math

	OpenAPS decision inputs

	OpenAPS decision outputs

	Understanding the purple prediction lines

	Understanding the basic logic (written version)

	OpenAPS algorithm examples

	Exploring further

	Monitoring OpenAPS
	The main ways of monitoring your rig ONLINE include:

	The main ways of monitoring your rig OFFLINE include:

	You’ll probably come back to this page later to setup different monitoring options

	Accessing your online rig via SSH

	Papertrail remote monitoring of OpenAPS logs (RECOMMENDED)

	System logging

	Apache-chainsaw

	Accessing your offline rig

	Preferences and Safety Settings
	Editing your preferences.json

	Commonly-adjusted preferences:

	oref1-related preferences:

	Exercise-mode related preferences:

	Understanding your wifi options
	Home Wifi

	Home router

	School wifi networks

	Mifi device

	Known wifi networks

	Unknown wifi networks

Build Your Rig

	Installing OpenAPS
	Step 1: Jubilinux (for Edison rigs only)

	Steps 2-3: Wifi and Dependencies

	Step 4: Setup script

	Log rotate fix

	Step 5: Watch your Pump-Loop Log

	Step 6: Finish your OpenAPS setup

	Tell us you’re looping
	After you have looped for three consecutive nights:

Customize-Iterate

	Optimizing Your Settings
	Using Autotune

	Frequent negative IOB at the same time every day

	Hills and valleys / Peaks and troughs / Up and down patterns

	Offline Looping
	Medtronic CGM users

	Dexcom CGM users

	Enable Bluetooth tethering
	Benefit of Using BT Tethering to Your Phone’s Hotspot

	Phone selection for BT Tethering

	Configure Bluetooth tethering on Edison running Jubilinux [optional]

	Add more wifi to your rig

	Useful apps for accessing your rig
	IP address of rig

	Logging into Rig

	SerialBot (Android)

	Nightscout Apps

	Review Logs

	IFTTT and Pebble buttons
	IFTTT Setup for phones

	Enable IFTTT in your Nightscout site

	Install IFTTT app on your Android

	ThisButton for the Pebble Watch - pictured at the very top of this page

	Alexa integration

	Google Assistant integration

	Google Calendar integration

	HTTP Request Shortcuts Integration

	iPhone Shortcuts buttons
	Get your “hashed API Secret”

	Install “Shortcuts” in your iPhone

	Create your first shortcut “Cancel Temp Target”

	Customise your first shortcut “Cancel Temp Target”

	Test your shortcut

	Create more Shortcuts

	A short note on entering a value

	Autosens
	Autosens adjustments

	Notes about autosensitivity:

	Autosens vs Autotune

	Autotune
	The easiest way to run Autotune

	Other sections on this page

	How Autotune works

	The difference between autotune and autosens:

	Understanding Autotune
	Safety reminders

	Example output from autotune

	What you’ll see in autotune inputs and outputs

	If you are DIY closed looping and looking at autotune:

	If you are not DIY closed looping and are looking at autotune:

	oref1: SMB and UAM
	Only run oref1 with the following caveats in mind:

	Understanding Super Micro Bolus (SMB)

	Understanding Unannounced Meals (UAM)

	How to turn on Super Micro Bolus (SMB)

	Troubleshooting

	Pushover, Super Micro Bolus (SMB), and OpenAPS

	Tips & tricks
	How do I enter carbs and boluses so OpenAPS can use them?

	What do you do with the loop in airport security when you travel

	What do you do with your loop when you travel across timezones? How do you update devices for a time zone change?

	What do you do with the loop when you shower?

	What do you do when you change sites?

	What do you do when you exercise?

	What do you do if you want to be off the pump for long periods during a day when you’re really active? Like for the beach or water park or sporting activity or similar?

	What if I want to turn off the loop for a while?

	How do I open loop?

	How can you make adjustments to insulin delivery while on the go? - Optimizing with Temporary Targets:

	How do I improve the range of my Edison/Explorer Board?

	How do I switch between insulin types, or switch to Fiasp? What should I change?

	How do I switch to a different Medtronic pump?

	Improving the battery life of your Raspberry Pi

	Update your rig in the future
	Step 1 (Master): Install the new version

	Step 2: Re-run oref0-setup

	Step 3: Remember to set your preferences!

	How to update Linux on your OpenAPS rig in the future

	How to run oref0-setup.sh again

Troubleshooting

	Troubleshooting oref0-setup
	Re-run the script again

	Should I enact cron?

	How do I know if it is working?

	It’s not working yet:

	Running commands manually to see what’s not working from an oref0-setup.sh setup process

	General linux troubleshooting
	Before you get started

	Pump-rig troubleshooting
	Basics of communications

	CGM-rig troubleshooting
	First, know how you get data from BG to your rig

	Second, troubleshoot the specific components of that setup

	Rig-NS troubleshooting
	Setting up your NS hosting site

	mLab maintenance

	Future data

	Nightscout info incorrect

	Flashing and updating Jubilinux
	Jubilinux won’t flash over Jubilinux (for people trying to flash a rig that had Jubilinux / OpenAPS set up previously)

	Jubilinux flashing fails constantly at rootfs, but gets further each time

	Other tips and tricks

Give Back-Pay It Forward

	Donate your data
	About the OpenAPS Data Commons and OpenHumans

	How to upload your data to the OpenAPS Data Commons

	Notes about OpenHumans and other data

	Frequently Asked Questions

	Ways to Contribute to OpenAPS

	Pay it forward to those less fortunate

Resources/Reference

	Resources
	Making your first PR (pull request)

	Advanced tips for adding multiple images to documentation

	For Clinicians – A General Introduction and Guide to OpenAPS

	Technical Resources

	Medtronic Button Error Troubleshooting

	Troubleshooting

	OpenAPS Overview and Project History

	Glossary

	Tips for switching from another DIY closed loop system to OpenAPS rig (or running both)

	Manual Edison Flashing instructions - all computer types

	Manual Edison Flashing instructions - FOR MAC

	Manual Edison Flashing instructions - FOR WINDOWS

	Deprecated: Pi Hardware info

	Setting Up Your Raspberry Pi

	Older instructions for original Pi-based setups

	For Clinicians
	The steps for building a DIY Closed Loop:

	How A DIY Closed Loop Works

	How data is gathered:

	How does it know what to do?

	Examples of OpenAPS algorithm decision making:

	Optimizing settings and making changes

	Summary

Next: How A DIY Open Source Closed Loop “Artificial Pancreas” Works

​

How A DIY Open Source Closed Loop “Artificial Pancreas” Works

How do you make decisions about your diabetes? You gather data, crunch the numbers, and take action.

A DIY loop is no different. It gathers data from:

	your pump [https://openaps.readthedocs.io/en/latest/docs/Gear%20Up/pump.html]

	your CGM [https://openaps.readthedocs.io/en/latest/docs/Gear%20Up/CGM.html]

	any other place you log information, like Nightscout [https://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/nightscout-setup.html]

It then uses this information to do the math and decide how your basal rates might need to be adjusted (above or below your underlying basal rate), to adjust and eventually keep or bring your BGs into your target range.

How does your closed loop gather data?

With OpenAPS, there is a “rig” that is a physical piece of hardware. It has “brains” on the computer chip to do the math; plus a radio stick to communicate with your pump; plus it can talk to your phone and to the cloud via wifi to gather additional information, plus report to the world about what it’s doing.

The rig needs to:

	communicate with the pump and read history - what insulin has been delivered

	communicate with the CGM (either directly, or via the cloud) - to see what BGs are/have been doing

The rig runs a series of commands to collect this data, runs it through the algorithm and does the decision-making math based on the settings (ISF, carb ratio, DIA, target, etc.) in your pump.

But how does it do everything it needs to do to gather data and make decisions and tell the pump what to do?

When you build an OpenAPS rig, you run through the setup described in this documentation, and:

	physically put the pieces of your rig together

	load the open source software on it [https://openaps.readthedocs.io/en/latest/docs/Build%20Your%20Rig/OpenAPS-install.html]

	configure it to talk to YOUR devices and have your information and safety settings on it (based on your preferences)

The open source software is designed to make it easy for the computer to do the work you used to do to calculate what needs to be done. It runs a series of reports to collect data from all the devices and places. Then it prepares the data and runs the calculations. Then it attempts to communicate and send any necessary adjustments to your pump. Then it reads the data back, and does it over and over again. You can see what it’s doing in the logs of the rig, or by viewing the information on your watch or on Nightscout.

Prev.: Welcome to OpenAPS’s documentation!

Next: How you will build your rig

​

How you will build your rig

The OpenAPS setup process can be broken up into several parts:

[image: Basic steps of building and using OpenAPS]

As with all things new, there is a little bit of a learning curve to building your first OpenAPS rig. Read slowly, double-check your spelling and make sure you don’t skip steps. If you get stuck or are unsure, you can use the screenshots to compare how the resulting screens should look. You can also post to Gitter or Facebook to ask for specific help if you find yourself stuck.

Over time, you may also choose to enable advanced features or update your rig, as more features and algorithm improvements become available. You should make sure to stay plugged in to key channels (like openaps-dev google group; Looped on Facebook; and on Twitter by following @OpenAPS) so you can be aware when updates become available. You should also make sure to tell us when you’ve closed your loop, which includes notes on how to join the safety-critical announcement list in case we need to alert you to any safety-related changes or updates.

What you’ll see in this guide

	Wherever you see text that is formatted like this, it is usually a code snippet. You should copy and paste instead of attempting to type this out; this will save you debugging time for finding your typos.

	Wherever there are <bracketed_components>, these are meant for you to insert your own information. Most of the time, it doesn’t matter what you choose as long as you stay consistent throughout this guide. That means if you choose myopenaps as your <myopenaps> directory, you must use myopenaps every time you see <myopenaps>. Choose carefully when naming things so it’s easy to remember. Do not include the < > brackets in your name.

Prev.: How A DIY Open Source Closed Loop “Artificial Pancreas” Works

Next: Where to go for help

​

Where to go for help

There are several ways to communicate with other participants and contributors in the #OpenAPS project. See also the Resources section for additional assistance.

Note: It’s best practice not to share your pump’s serial number, so make sure not to include it in pictures or pasted text output when seeking help on pump communication. Ditto for Nightscout URL and API secret and other private information that could enable someone to access your setup.

Related: You may want to read this blog post for tips on how to best seek help when troubleshooting online [https://diyps.org/2017/03/19/tips-for-troubleshooting-diy-diabetes-devices-openaps-or-otherwise/] - there is a lot of information you can provide proactively when seeking help that will aid in getting your issue resolved more quickly.

Read the documentation!

One huge resource is this documentation. We recommend bookmarking the link [http://openaps.readthedocs.org/en/latest/] to the docs, as they are frequently updated (sometimes daily!) as we add more information, troubleshooting tips, and more. Anytime we are asked a question on one of the below channels, we try to add it to the documentation. So chances are, your question may already be answered here!

Tips for navigating the documentation

You may notice that the left hand side of the documentation has navigation. It is organized in order of setting up OpenAPS, and has various sections on finding your gear; what you should do before you build a rig; how to setup up your rig; and additional features and tips and tricks for optimizing your looping setup. This navigation is long, you can mouse over the section and scroll down to see all the pages listed in the top-level navigation!

Click here to expand some pictures that shows you the left hand navigation

 Hardware overview

Hardware overview

This section describes the hardware components required for a ‘typical’ OpenAPS implementation. There are numerous variations and substitutions that can be made but the following items are recommended for getting started.

The basic setup requires:

	a compatible insulin pump

	a CGM

	a small computer (Intel Edison, or Raspberry Pi for example) and a radio board/stick (i.e. Explorer Board for Edison or Explorer HAT for Pi)

	a battery

If you come across something that doesn’t seem to work, is no longer available, or if you have a notable alternative, feel free to edit this documentation with your suggestions.

Notes about deprecated hardware setups

Carelink can be used with up to oref0 0.6.3. However, it will not be used with oref0 0.7.0 moving forward. Carelink has poor range and will likely frustrate you. Please see the rig parts page for current hardware recommendations.

TI sticks (via USB) are not supported in oref0 0.7.0, but they can be wired to the SPI or UART pins on the Raspberry Pi. Please see the rig parts page for documentation on how to do this.

Prev.: Where to go for help

Next: Information about compatible insulin pumps

​

 Information about compatible insulin pumps

Information about compatible insulin pumps

Many commercial pumps currently available are not compatible with OpenAPS; only a small selection of older Medtronic pumps are compatible directly with OpenAPS.

Currently, only the following Medtronic MiniMed models allow us to remotely set temporary basal rate commands, which is required to do OpenAPS:

512/712 (all firmware)
515/715 (all firmware)
522/722 (all firmware)
523/723 (with firmware 2.4A or lower)
554/754 (European Veo, with firmware 2.6A or lower; OR Canadian Veo with firmware 2.7A or lower)

NOTE: For European/WorldWide users who have access to a DANA*R/RS, Roche Accu-chek Combo or Roche Accu-chek Insight insulin pump, you may be able to use AndroidAPS, which leverages OpenAPS’s oref0 algorithm but allows you to interface using an Android phone and Bluetooth to communicate directly with the DANA*R/DANA*RS/Roche Accu-chek Combo/Insight pump. [See here for instructions and details related to AndroidAPS] (https://androidaps.readthedocs.io/en/latest/). Omnipod is also directly compatible for use with AndroidAPS; again, see their documentation for the latest details.

How to check pump firmware (check for absence of PC Connect)

The firmware version will briefly display after the initial count-up on a new battery insertion. After the pump has been on for a while, you can check the firmware version by using the Esc button on the pump and scroll all the way to the bottom of the screen messages using the down arrow on pump.

A double-check for pump compatibility is to look for the ABSENCE of PC connect in the pump menu. Press the ACT button, scroll down to the “Utilities” menu.

	If there is a “Connect Devices” menu look for a “PC Connect” option.
	This is the case for the 523/723 and 554/754 models.

	If “PC Connect” is present, then the pump will NOT work for looping.

	If “PC Connect” is absent, then the pump should be able to receive temp basal commands and be compatible.

	If there is no “Connect Devices” menu, then the pump should be able to receive temp basal commands and be compatible.
	This is the case for the 512/712, the 515/715 and 522/722 models.

	For 512/712 pumps, you will not be able to use an advanced feature (SMB) but will be able to do basic temp-basal based looping.

Note that not all possible sellers of pumps will accuratly describe the model number: if they are willing to sell a pump they may not have interest in setting it up for looping, and the distinctions about model numbers and firmware version may not be important to them. It will be for you though! Therefore, it’s prudent to verify the model by seeing pictures and/or videos of the pump in action.

If you have one of the above mentioned pumps, but it has buttons that do not work, use the instructions found on this Imgur photo album [http://imgur.com/a/iOXAP] to repair your pump. This repair is quite straight-forward and easy.

Why do I need a certain pump firmware?

Due to changes in the firmware, the openaps tools are only able to function in-full on the above pump models. Security features were added after firmware v2.4 in the US that prevent making some remote adjustments via the decoded communications OpenAPS uses.

If you are not based in the US, some later model pumps and firmware may be compatible as listed above. Check for PC Connect absence to determine compatibility.

Can I downgrade my pump firmware?

One of the most frequently asked questions is “I have a 723 pump but it has version 2.5B software version. Has anyone figured out a way to make newer model Medronic pumps compatible? Like flash older version of software onto my 723 2.5B pump?” The answer is “No. The ability to downgrade software versions in the pumps does not exist. It has been investigated and nobody has made any successful progress to that end.”

Tips for finding a compatible pump

If you need to acquire a compatible pump, check CraigsList, ask around local or pay-it-forward Facebook groups, or talk to friends in your local community to see if there are any old pumps lying around in their closets gathering dust. SearchTempest [http://www.searchtempest.com] is a great tool for searching Craigslist nationally all at once. In addition to searching for listings, consider posting an offer to Craigslist or ask around local community groups.

If you’re buying a pump online, we recommend you ask the seller to confirm the firmware version of the pump. (You may also want to consider asking for a video of the pump with working functionality before purchasing.)

 Other purchasing tips (click here to expand):

 Information about compatible CGMs

Information about compatible CGMs

OpenAPS currently primarily supports these different CGM systems:

	the Dexcom G4 Platinum system (with or without the Share functionality),

	the Dexcom G5 system

	the Dexcom G6 system

	the older Medtronic CGM system (MiniMed Paradigm REAL-Time Revel or Enlite),

	and other CGM or CGM-like devices (Abbott’s FreeStyle Libre) if the data is uploaded to Nightscout and the OpenAPS rig has Internet connectivity.

Using a Dexcom CGM

With Dexcom G4, the Share platform is not required; but is valuable for uploading BG data to the cloud (and into Nightscout, which can then send BGs to the rig). However, without Share, a G4 receiver can instead be plugged in directly to the OpenAPS rig. For Dexcom G5 you can also use a compatible receiver (software upgraded G4 with Share receiver or a G5 Mobile Receiver), or also pull data from the Dexcom Share servers into Nightscout for use with an Internet-connected OpenAPS rig. The same applies for G6 as it does for a G5.

Also note that an easy way to loop offline [https://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/offline-looping-and-monitoring.html#c-send-g5-or-g6-bgs-direct-to-rig-xdrip-js-lookout-logger] is to choose the xdrip-js setup option during oref0-setup (in 0.7.0 and later versions) to have the rig pull directly from a G5 or G6 receiver.

Using the Medtronic CGM

As the Medtronic pump collects data directly from the Enlite sensors, OpenAPS will retrieve CGM data in addition to your regular pump data from your pump. This CGM setup means you can loop offline without any extra setup steps.

Pulling CGM data from the cloud

Your OpenAPS implementation can also pull CGM data from a Nightscout site in addition to pulling from the CGM directly, when your rig has internet connectivity. You can find more documentation about pulling CGM data from a Nightscout site here [https://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/nightscout-setup.html].

	If you have an Android phone, you can use the xDrip app to get your data from the Dexcom to Nightscout, to then be used in OpenAPS.

	If you have a Dexcom G4 Share receiver or Dexcom G5/G6 paired with your phone, you can send that data to Nightscout to be used by OpenAPS.

	You could also build a DIY receiver. Directions to build the receiver, set up your uploader and Nightscout can be found here [http://www.nightscout.info/wiki/nightscout-with-xdrip-wireless-bridge].

	You can also use part of the DIY receiver set up - the wixel – directly to the Raspberry Pi. Learn more about the wixel setup here [https://github.com/jamorham/python-usb-wixel-xdrip] and here [https://github.com/ochenmiller/wixelpi_uploader].

	If you are using Abbott Freestyle Libre in combination with Sony SmartWatch 3 and xdrip+ (or possibly other combinations of technology to get Libre data up into the cloud), you can also pull CGM data directly from Nightscout.

Offline looping options

See this page for much more detail on all of your offline looping options [https://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/offline-looping-and-monitoring.html] with various CGM types.

Prev.: Information about compatible insulin pumps

Next: Get your rig hardware

​

 Get your rig hardware

Get your rig hardware

You have several options for hardware:

1. The most recommended rig has been an Edison + Explorer Board. Unfortunately Intel stopped making the Edison boards as of 2018. If you can find an Intel Edison (eBay, local stores, etc - this is still very possible), this is still a highly recommmended rig. It is the smallest rig (and easily portable), with better battery life because it is power efficient. See below for the list of hardware for Edison setups [http://openaps.readthedocs.io/en/latest/docs/Gear%20Up/edison.html#hardware-information-for-intel-edison-based-setups].

2. Another recommended option is a Raspberry Pi-based setup, with the new Explorer HAT. This rig setup makes it easier to see information when offline because it has an onboard screen for displaying readouts. See below for the list of hardware required for Pi/HAT setups [http://openaps.readthedocs.io/en/latest/docs/Gear%20Up/edison.html#hardware-information-for-pi-based-setups-with-the-explorer-hat].

3. Yet another option is a Raspberry Pi-based setup, with an Adafruit RFM69HCW Bonnet. This rig setup makes it easier to see information when offline because it has a small onboard screen for displaying readouts, but it does not come with charging hardware for a battery like the Explorer HAT or Explorer Board. You will need to build your own charging circuit or use a USB power block if you want to make this rig portable. However, this makes an excellent stationary or backup rig! See below for the list of hardware required for Pi/Bonnet setups [http://openaps.readthedocs.io/en/latest/docs/Gear%20Up/edison.html#hardware-information-for-pi-based-setups-with-the-adafruit-rfm69hcw-bonnet].

4. (Not recommended, but supported) There is an experimental alternative to prefabricated hardware on the Raspberry Pi (Explorer HAT or Adafruit Bonnet), which can serve as the radio on a Pi-based rig, but will not have the screen and requires you to solder. See below for the list of hardware required for more details on a setup with RFM69HCW breakout board [https://openaps.readthedocs.io/en/latest/docs/Gear%20Up/edison.html#hardware-information-for-pi-based-setups-with-rfm69hcw-experimental].

5. (Not recommended, but supported) If you already have a USB TI stick (from an older rig build), you can continue using it in 0.7.0 if you reflash it with new firmware and wire it to the SPI header on the Raspberry Pi. See below for the instructions on how to re-flash and re-wire your TI stick [https://openaps.readthedocs.io/en/latest/docs/Gear%20Up/edison.html#hardware-information-for-pi-based-setups-with-rewired-TI-stick].

Hardware information for Pi-based setups with the Explorer HAT

Summary of what you need for a Pi/HAT rig:

	Explorer HAT [http://openaps.readthedocs.io/en/latest/docs/Gear%20Up/edison.html#hat]

	Pi0WH (recommended) or Pi 3 [http://openaps.readthedocs.io/en/latest/docs/Gear%20Up/edison.html#pi]

	Battery [http://openaps.readthedocs.io/en/latest/docs/Gear%20Up/edison.html#battery]

	SD Card [http://openaps.readthedocs.io/en/latest/docs/Gear%20Up/edison.html#sd-card]

HAT:

As of April 2018, there is be a Pi+HAT rig as an option for closing the loop with OpenAPS. The HAT can be ordered from the same place that makes the Explorer Board (click here to pre-order [https://enhanced-radio-devices.myshopify.com/products/900mhz-explorer-hat?variant=1950212653065]). We call it the “Explorer HAT”, to differentiate from the Explorer “Board” that goes with the Edison (see below).

PI

You also need a Raspberry Pi. Many users are opting for the “Raspberry Pi Zero WH” - with headers - so you don’t have to solder, and can simply add the HAT onto the Pi. See this PiZeroWH from Adafruit [https://www.adafruit.com/product/3708], or from other sellers around the world [https://www.raspberrypi.org/products/#buy-now-modal]

As an alternative, you can also use the HAT with a Raspberry Pi 2/3/4.

Battery

Lipo batteries are typically used to power the rig on the go because they charge quickly and come in a variety of compact sizes. When choosing a battery, you have a trade-off between a larger battery with longer duration or a smaller battery with shorter duration that is easier to carry around. A 2000 mah battery is roughly the size of the Raspberry Pi0, and can last around 4 hours. You’ll want a “1S” type, which uses a single cell and outputs at 3.7 VDC. It needs a JST connector to plug into the Raspberry Pi. See this battery from HobbyKing [https://hobbyking.com/en_us/turnigy-2000mah-1s-1c-lipoly-w-2-pin-jst-ph-connector.html?___store=en_us].

If you will need to run longer than that while unplugged from wall power, consider a portable charger. These are in widespread use for cell phones and commonly available in a large number of sizes. Here is an example portable charger from Amazon [https://www.amazon.com/Anker-PowerCore-Ultra-Compact-High-speed-Technology/dp/B0194WDVHI/ref=sr_1_6?ie=UTF8&qid=1532089932&sr=8-6&keywords=backup+battery&dpID=31B5rBNP%252B8L&preST=_SY300_QL70_&dpSrc=srch]. Using a USB to micro-USB adapter you can power the rig from the portable charger by plugging the charger into the Power port, which is the micro-USB port nearest the corner of the Pi0.

Note: You will probably want to underclock your Raspberry Pi to get a longer battery life. See this for details [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/usability-considerations.html#improving-the-battery-life-of-your-raspberry-pi].

SD card

An 8 GB SD card should provide plenty of space for the linux operating system, OpenAPS code and storage for log files. The ability to use larger and removable storage is one of the advantages of the Raspberry Pi. You can get a MicroSD card and adapter from Adafruit [https://www.adafruit.com/product/2692] when you order your Pi and Hat. Or you can get an equivalent 8 GB SD card from Amazon [https://www.amazon.com/Kingston-microSDHC-Class-Memory-SDC4/dp/B00200K1TS/ref=sr_1_8?s=wireless&ie=UTF8&qid=1532090813&sr=1-8&keywords=8gb+micro+sd] or other sellers.

Note about Pi+HAT cases

Because we are still optimizing the software to be as power-efficient as possible, we have not narrowed down on the best recommended battery. You may want to use a soft case for ease of access to the components, flexible arrangement and the ability to use a variety of battery sizes. If you are using the 2000 mAh battery above, you can use this 3d printed hard case [https://www.thingiverse.com/thing:3010231] to protect the rig and battery in a relatively compact package. The design is built in OnShape [https://cad.onshape.com/documents/74459dfcb527ad12c33660aa/w/2be92a72bb7f1c83eb091de2/e/b4fa9c3be204ffa3dea128a1], which has a free access level subscription for public domain documents. You can make a copy and tweak the design to your liking.

Alternatives 3d printed cases for Pi0+HAT include this hard case with room for 2x2000 mAh Li-Po batteries [https://www.thingiverse.com/thing:3038806/] and this hard case with room for 2x18650 batteries (6800 mAh total, 86x77x25mm) [https://www.thingiverse.com/thing:3502320/].

Hardware information for Pi-based setups with RFM69HCW (experimental)

This Pi + RFM69HCW is still experimental!

If you are a maker person or a bit into soldering electronics at least, you may also build your rig with a piece of hardware, that is a lot cheaper than the Explorer HAT, although it does not have the screen. You also won’t have LEDs indicating status, no battery charging and there will not be (m)any 3d printable case models. If it’s your only option because you’re on a budget and can’t afford to spend 150 bucks on a rig, please think about this step twice. This one will cost you only 30, but a lot of extra time.

Click here to expand and see pictures of a rig with a Pi0WH and RFM69HCW::

 Collect your data and get prepared

Collect your data and get prepared

Before getting started, we suggest that you store at least 30 days of CGM data. People often like to compare their before and after looping data. Nightscout is an excellent tool to capture your CGM history, as well as log your carbs and boluses. For instructions on setting up your own Nightscout site (or updating your existing one for OpenAPS use), see here [https://openaps.readthedocs.org/en/latest/docs/While%20You%20Wait%20For%20Gear/nightscout-setup.html]. By logging and collecting a recent history of your insulin+BG patterns, you can also take advantage of the Autotune feature which uses Nightscout databases, as well as use Nightscout reports, which are often helpful for showing your data to your healthcare provider.

Later in these docs is a link to donate your data to a project called OpenHumans [https://openaps.readthedocs.org/en/latest/docs/Give%20Back-Pay%20It%20Forward/data-commons-data-donation.html]. There is no requirement to share your data or participate in OpenHumans. If you choose to, you can donate your data whether you are looping or not. Individuals within the project who share their data do so willingly and you should do the same only if you feel comfortable. That being said, it is always a good idea to record your data before embarking on a new set of experiments. This will be helpful to understand the effects of the system as well as gain a better understanding of your response to different control strategies.

Practice good CGM habits

A good quality CGM session is a critical part of successful looping. If you’re used to stretching your sensor sessions out until failure, you may want to reconsider this approach as you will have failed looping times, too. One technique that has helped eliminate early sensor jumpiness in a session is to “presoak” a new sensor before the old one dies when you notice the old sensor is getting jumpy or loses calibration. To read more about this presoak technique, check out this blog post [https://diyps.org/2016/06/27/how-to-soak-a-new-cgm-sensor-for-better-first-day-bgs/]. In addition, be diligent about your sensor calibration habits. Only calibrate on flat arrows and when BGs are steady. Many loopers calibrate once or twice a day only; at bedtime (after dinner has finished digesting) and/or just before getting out of bed. A good guide to sensor calibration - which generally applies regardless of which sensor you have - can be found here [https://forum.fudiabetes.org/t/how-to-calibrate-a-dexcom-g4-g5-cgm/2049/].

Use your gear

Starting a DIY loop system like OpenAPS means you are probably switching pumps, and quite possibly using Nightscout for the first time. You may find, like many new users, that settings you thought you had dialed in before will need to be adjusted. Good news, there are several tools and techiques to get you off to the right start. They include:

	Use your pump BEFORE you begin looping

	Practice good CGM habits

	Collect your carb, bolus, and BG history using Nightscout

	Use Autotune to analyze and fine-tune your pump settings

Start Medtronic pump

Many loopers have come from Animas, OmniPods, Roche, or t:slim pumps in order to pump using old Medtronic pumps. The menus will be different and you need to get proficient with the pump’s normal use before complicating things with looping. Become familiar with the reservoir changes and teach your T1D kid, if that’s the person who will be using the pump. Train caregivers on the new pump, as well. Assuming that you’re already familiar with insulin pumping (and you should be before trying to loop) but new to these old Medtronic pumps, these “quick menu” guides will help:

	x12 [https://www.medtronicdiabetes.com/sites/default/files/library/download-library/user-guides/x12_user_guide.pdf]

	x15 [https://www.medtronicdiabetes.com/sites/default/files/library/download-library/user-guides/x15_user_guide.pdf]

	x22 [https://www.medtronicdiabetes.com/sites/default/files/library/download-library/workbooks/x22_menu_map.pdf] (aka “REAL-TIME”)

	x23 [https://www.medtronicdiabetes.com/sites/default/files/library/download-library/workbooks/x23_menu_map.pdf] (aka “REAL-TIME REVEL™”)

	x54 [https://www.medtronic-diabetes.co.uk/sites/uk/medtronic-diabetes.co.uk/files/veo-x54_ifu_updated_26.04.2013.pdf] (aka “Veo™”)

You should definitely test your basals, ISFs, carb ratios, and DIA all over again now that you’ve switched pumps and infusion sets. Expect for your settings to change when switching pumps and when beginning to close the loop.

Pump settings

There are a couple areas in the pump that will need to be set specifically in order to allow OpenAPS to loop. Since you are going to be looping soon, you might as well set them correctly in your pump now:

	Set the Temp Basal type to units per hour not % type.

	Set the carb ratios to grams, not exchange units.

	Set the max basal rate to a reasonable value (typically no more than 3-4 times your regular basal).

	Set basal profile, carb ratios, and ISF values.
	Safety note: your carb ratio is unlikely to vary significantly throughout the course of day. If you have carb ratios that vary significantly (such as more than 2x) between different times of day, you may get unexpected results in looping, such as COB reappearing when the CR schedule changes. For safety, we recommend checking your settings against Autotune, which currently uses a single CR for the entire day. If you are using a schedule with widely varying carb ratios or ISFs, that may be compensating for something other than an actual diurnal variation in carb ratio: perhaps different absorption speeds of different foods, or perhaps related to different macronutrient composition (instead of entering carb equivalents for fat/protein), differing basal insulin needs around mealtime, or something else.

	Set your DIA. Note: Most people have their DIA for traditional pumping to be too short (e.g. 2 or 3). For looping, OpenAPS will default to using 5. Many people find they actually need it to be 6 or 7 with properly adjusted other settings.

	If you have periods in the day where your pump normally has basal settings of zero - your loop will not work! You can resolve this by setting the lowest possible basal setting your pump will permit. OpenAPS will then issue temp basals of zero, as needed.

Easy Bolus Button

Setting up the Easy Bolus feature for your pump now (and practicing it) may help you avoid a small, annoying pump error later. If you are going to use the (super advanced, not for beginners) SMB (super microbolus) feature, then you need to be aware of the potential for pump error due to remote bolus commands. When the pump is engaged to bolus with a remote bolus command from the rig and another bolus is initiated from the pump manually, the pump will error out with an A52 error. The pump will not deliver the bolus, the reservoir will rewind and the pump time needs to be reset. Put simply, two bolus commands coming in at once cause the pump to error and rewind.

One way to minimize this error is by checking the pump before giving a bolus. Check to see if the rig is giving a SMB by using the OpenAPS pill in Nightscout, checking the pump-loop log in Papertrail, or logging into the rig and looking at the pump loop. If the rig is actively giving a SMB, then try to time your bolus wizard use to be in the 5 minutes between SMBs (SMBs are only enacted every 5 minutes at most). These steps might be a little too complex for young kids or school nurses, depending on the situation. If this error happens frequently, you may need to consider turning off SMBs or try using the Easy Bolus button.

The Easy Bolus button allows you to quickly use the arrow buttons on your pump to give a set increment of insulin. For example, if you setup your Easy Bolus button to have 0.5 unit increments, every click of the up arrow on the pump will increment a bolus of 0.5 units. Push the button 4 times and you are setting up a 2.0 unit bolus. You still have to click the ACT button twice to confirm and start the delivery of the bolus. Since the button presses are usually pretty quick, there’s less likelihood of radio communication interference with a rig’s SMB command. You can use IFTTT buttons to enter the carbs in your Nightscout site (or use Care Portal in Nightscout directly). For example, having IFTTT buttons for 5, 10, and 20g carb entries (or whatever your common meal amounts are) can make entering in food pretty easy. The Easy Bolus method requires the ability to roughly estimate your meal bolus (e.g., total carbs divided by carb ratio). As long as you are close, the loop should be able to make up any amount of bolus that was slightly over/under done by using the Easy Bolus button.

Extended and Dual Wave substitute

Due to the way Medtronic pumps operate, temp basals can only be set when there is no bolus running, including extended (square) and dual wave boluses. If you’re used to extended or dual wave boluses for carb heavy meals (e.g., pizza), which may still be the optimal approach for you, OpenAPS will not be able to provide temp basals during the extended bolus. You won’t be looping during those types of boluses.

But, you don’t need the square/dual wave boluses anymore, as OpenAPS will help simulate the longer tail insulin needed if you’ve entered carbs into the system. Also, many loopers have found they can convert to a split bolus strategy to effectively deal with the same meals. There is a carb+insulin+BG simulator called Glucodyn [http://perceptus.org] that can be used to model a split bolus strategy for those meals. By setting different bolus times and bolus amounts, the model allows the user to slide adjustments to minimize early-meal lows as well as late meal rises. For example, you may find that a 20 minute pre-bolus of 50% of the carbs and a later bolus for the remaining 50% will work well, with looping helping to make up the difference that an extended bolus used to provide. You can practice the transition to split bolusing even before you get your loop running.

Some of the super advanced features you’ll learn about later - Unannounced Meals and Supermicrobolus (UAM/SMBs) - also help smooth the transition from extended bolusing. Some users have found that entering in carbs alone can be effective, especially in helping later BG rises from slow-absorping carbs. Once you get your loop running, and are ready for the advanced features, you may be interested in playing with the various techniques available for heavy, slow carb meals.

Autotune

You’ve been logging and recording your carbs and boluses in Nightscout, right? You have your CGM data flowing into Nightscout too? Great...now autotune can give you a headstart to fine-tuning your basals and ISF. There are some restrictions on autotune still (only a single daily carb ratio and single daily ISF), but there are tips on the autotune page [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/autotune.html] for how to deal with multiple values. You can run autotune before you get your loop setup...it doesn’t have to run on a rig.

How important are good basals and ISFs? You mean you weren’t convinced already by the amount of work put into autotune itself? Well, autotune is a required step in order to enable the most advanced features (SMB and UAM). The new version will check to see if you have an autotune directory in your rig before the loop will be allowed to actually enact any SMBs (no matter what your preferences say). To fulfill this requirement you can do one of the following which will create an autotune directory where it needs to be:

	enable autotune during your OpenAPS setup script and autotune will run automatically as part of your loop.

	run autotune as a one-off (single run) on your rig using the directions given in the link above

Regardless of if you want to use advanced features later, we highly recommend running autotune as part of the rig nightly, or as a one-off and periodically checking the output to see if the settings on the pump that you are using reflect what the data says your body really needs.

Prev.: Get your rig hardware

Next: Loops In Progress

​

 Loops In Progress

Loops In Progress

To get you comfortable with submitting a “PR” (stands for pull request), test it out by submitting a PR to this page, adding your name to the list of people who have loops in progress.

New to Github, and PRs? Check out how to submit your first PR [http://openaps.readthedocs.io/en/latest/docs/Resources/my-first-pr.html].

List of people who are working on closed loops:

	Dana Lewis

	Ben West

	Chris Hannemann

	Sarah Howard

	Mike Stebbins

	Scott Hanselman

	Greg Scull

	Aaron Michelson

	Jayson EWER –Intel Edison w/ TI–cc1111

	Frank Best

	Brooke Armstrong & Matt Pazoles

	David Young

	Paul Martin

	Jarred Yaw

	Shane Mitchell

	Boris and Kayley Raskin

	Andy Pabari

	Rob Kresha - (Papillion, NE, USA)

	Christian Robinson (London, UK)

	Gary Kidd (Wilton, CT)

	Nathan Morse

	Paul Davis (Brighton, UK)

	Marion Barker (Sunnyvale, CA, USA)

	Frank Jungman (San Diego, CA)

	Sophie Thacher

	Luis Betancourt (Veracruz, Mexico)

	Tom Boudreau (Washington DC, USA)

	Ryan Chen

	Katherine Mason

	Garrett Webb (Dallas, TX)

	Brandon Faloona (Seattle, WA / Burbank, CA)

	Keith Burns - for Heather (Richmond, VA)

	Kim St. Dennis (Los Angeles, CA)

	Gabriel and Gideon Arom (Chicago, IL / Los Angeles, CA)

	Arlene Samowich (Nashville, TN)

	Andy Probolus & Marianne Smith (Lancaster, PA)

	Gregg Haroldson (Huntington Beach, CA)

	Gera Yeremin (Santa Rosa , CA)

	Ed Nykaza

	Jeff Waters (Madison, WI)

	Greg Hull (Wheaton, IL)

	Sara and David Goya (Anaheim, CA)

	Rafael Matuk (Chicago, IL)

	Luuc Verburgh (Eindhoven, The Netherlands)

	Iain Cartwright (Adelaide, Australia)

	Julie Raines (Poughkeepsie, NY)

	Brandon Parrish (Augusta, GA)

	Katie Ellison (Bellevue, WA)

	Sarah Easter (Georgetown, TX)

	Terri Lyman (Prescott Valley, AZ)

	Gina Lyon (Laurel, MS) Edison-Explorer Bd, DexG5

	Eric Jensen (Swarthmore, PA)

	John Dodds (Glasgow, UK)

	Lindsey Maguire (Silicon Valley)

	Dan Robinson (Chicago, IL)

	Mitch Phillips - (Pennington, NJ)

	Colin Barlow & Cassie Knox - (San Diego, CA)

	Andrew H (Sydney, Australia)

	Hichame Yessou (Milano, Italy)

	Tim Street (London, UK)

	Neal Harvey (Grants Pass, OR)

	Patrick Metcalfe

	Ken Webster (Hobart, Tas, Australia)

	David Eddy (Madbury, NH)

	Tirzah Heide for Nathanael (St. Louis, MO)

	Tracy Osheroff (Seattle, WA)

	Mike & Jennifer Crawford (Calgary, AB, Canada)

	Matthew Byatt (Cambridge, UK)

	Anna Hassan (New Orleans, LA)

	Tony Zarro (Atlanta, GA)

	Mike Wright (San Jose, CA)

	Derek Rodeback (Loma Linda, CA)

	Joanne Spotten (SLC, UT)

	Sandra Keßler (Kassel, Germany)

	Lukas Ondriga (Svaty Jur, Slovakia)

	Dominic Herrington (Bishops Stortford, UK)

	Taylor Fowler (Brooklyn, NY)

	Mikel Curry

	Aditya Dasnurkar

	Jason Wittmer for Andrew (Clive, IA)

	Kevin Ruess Marshall (Indianapolis, USA)

	Keith Kubischta (Poway, CA)

	Emily Kranz (Greensboro, NC)

	Orla Wilson (Baltimore)

	Jason Pell for Heidi and Mallory (New York, NY)

	Patrick van Gestel (Hilvarenbeek, Netherlands)

	Joe Moran (Los Altos, CA)

	John & Gregory Kelleher (Sligo, Ireland)

	Carine Bruyndoncx (Arendonk, Belgium)

	Jordan Berger (SLC, UT)

	James Henley (Friendswood, TX)

	Amy Andrews (Boston, MA)

	Ann Delano (Seattle, WA)

	Marcus Whitley (Greenbrier, AR)

	Trevor Wood (Santaquin, UT)

	Anne Svejda (Virginia Beach, VA)

	Melody Andrews-Caron (Ontario, Canada)

	Andy Sharrow (Saginaw, MI)

	John Benjamin (Clawson, MI)

	Vince P. for Tristan (Ravenna, OH)

	Anthony Cerrone (Danville, CA)

	Rachel Aumaugher (Davison, MI)

	Joe Greene (Jacksonville, NC)

	Sebastien Lussier (Montreal, Canada)

	Chris Harris (Sydney, Australia)

	Lee Skelton (London, UK)

	Jacqueline Burke (Troy, MI / Baltimore, MD)

	Kate Hainsworth (Austin, TX)

	Brian Rabinovitz (Chapel Hill, NC)

	Stephen G. (Seattle, WA)

	Emily Stunek (Lake Shore, MN)

	Lorenzo Conte (Chicago, IL)

	Alasdair McLay (Derby, UK)

	Ahanu Banerjee (Pittsburgh, PA)

	Ken Huat CHONG (Kuala Lumpur, Malaysia)

	Daniel Bjørnbakk (Norway)

	Katie DiSimone (Paso Robles, CA)

	Rebecca Jervey (Philadelphia, PA)

	Ivica Suran (Pazin, Croatia)

	David Rimmer (Melbourne, Australia)

	Kyle King (Opelika, AL)

	Sonya Neufer

	Sacha M (New Zealand)

	Joe Dunn for Lizzie

	Michele Lawford (Canada)

	parenthetic (diabetic)

	Lorenzo Sandini (Finland)

	Deidra Little (Seattle, WA)

	Tim Mathis (Fort Walton Beach, FL)

	Greg Uhlenkott (Grangeville, ID, USA)

	Song Ming Jie (China)

	Chuck Vanderwist (Western Colorado, USA)

	James Corbett (Greenbrier, TN USA)

	Meghan Rutledge (Dallas, TX)

	Rick Warren (Vancouver, BC, Canada)

	Carl-Johan Wehtje (London, UK)

	Cameron Renwick (Muskoka, Ontario, Canada)

	Cameron Chunn (Huntsville, AL)

	Patrick & Lesly Kelly for Addy (Tempe, AZ)

	Melanie Mason for Toby (Leicester, UK)

	Mohamed Ali Bedair (Cairo, Egypt)

	Hilary Koch (Waterville, ME)

	Eric Feibelman (Alachua, FL)

	Winfried Kuiper (Langballig, Germany)

	Selin Aygün (Ankara,Türkiye)

	Ken Kotch (Boulder, CO, USA)

	Brian Densmore (Clovis, CA, USA)

	Jesse Szypulski (Louisville, KY, USA) Edison / Explorer Board

	Robert Silvers (Norwell, MA)

	Eric Metzler (St. Paul, MN)

	Helene Brashear (Austin, TX)

	Jeremy B. for CM (New York, NY)

	Molly Duerr (Minneapolis, MN)

	Amber K (Ithaca, NY)

	Melanie Shapiro (Gainesville, FL)

	Brandon (Philly)

	Justin W (Charlottesville, VA)

	Chris Creek (Martinsburg, PA)

	Tom Petrillo (San Diego, CA)

	Christian Driver for Lucy (Wilmslow, UK)

	Katie Aldridge

	Darlene Morissette (Winnipeg, MB, Canada)

	Jake Punshon (Saskatoon, SK, Canada)

	Elisa Kelley (Austin, TX)

	Stuart Raphael (Sydney, Australia)

	Dan Durham (Edmonton, AB, Canada)

	Niels Hartvig (Odense, Denmark)

	Dirk Gastaldo (Newbury Park, CA, USA)

	Clayton McCook (Edmond, OK, USA)

	Kris Schmitz (Washington, DC/New Brunswick, NJ)

	Steven Miller (Vancouver, BC, Canada)

	Kyle Larsen (Provo, UT)

	Ben Fowler (Huntsville, AL)

	Giuseppe Acito (Roma, Italy)

	Mark M (Chicago, IL)

	Chris Reilly (Detroit, MI)

	Rod Snyder (Morgantown, WV, USA)

	John Murray (Pinellas Park, FL, USA)

	Shirley Steinmacher (son, Salt Lake City, UT, USA)

	Michael Spradling (Raleigh, NC)

	Tore Bjørndalen (Norway, Oppegård)

	John Young (King of Prussia, PA)

	Kathleen Gagnier (Orlando, FL)

	Kim Goldmacher (Philadelphia, PA)

	Craig Brenner (Seattle, WA)

	Darryl Schick (PA)

	Nadine Pedersen (Vancouver, Canada)

	Beno Schechter (Coral Gables, FL)

	Rami Laakso (Nummela, Finland)

	Steve Lund (PEI, Canada)

	Paul Andrel (Phoenixville, PA)

	Allan Evans (Ottawa, Canada)

	Simon Lewinson (NE Victoria, Australia)

	Angie Kabat (Fairbanks, AK)

	Jacob H (Waterford, MI)

	Jim Van Hook (St. Louis, MO)

	Pedro C (Porto, Portugal)

	Roger Sanftner (San Antonio, TX)

	Gabriela Ezquerro (Mexico City, MEX)

	Jessica Carey (CA)

	Lynne Beard (Kincardineshire, Scotland)

	Carlin Pressnall (Seattle, WA)

	James Brown (Derby, UK)

	Allison Marx (Atlanta, GA)

	David Ashby (Rexburg, ID)

	Andrew Warrington (Alsace, France)

	Kelsey Yearick (Crook, Colorado)

	Marcel Zandvliet (The Hague, The Netherlands)

	Gerard Dwan (Boston, MA)

	Jon Groelz (Captain Cook, HI)

	Christos Alonistiotis (Athens, Greece)

	Chris Lodermeier (MN)

	Tom Beesley (Brighton, UK)

	Robert Sandvik (Stavanger, Norway)

	Eugene Girard (Kitchener, Canada)

	Luke Jenkins for Kyler (Vancouver, WA)

	Brandon Hunnicutt (Denver, Colorado)

	Kate Groves (Oxford, UK)

	Tom Wells (Guildford, UK)

	Kyle Masterman (Perth, Western Australia)

	Virginia Saunders (Ontario, Canada)

	Enda Farrell (Berlin, Germany)

	Carl Robertson (Rochester, NY, USA)

	Ben Ortega (Minneapolis, MN)

	Reza Bolouri (Melbourne, Australia)

	Todd Radel (Doylestown, PA)

	Steve Mann (Bronx, NY)

	Jason Nerothin (Madison, WI)

	Eben Demong (San Ramon, CA)

	Peetu Hongisto (Hollola, Finland)

	Jonathan Cole (St. Louis, MO, USA)

	Laura Ferrara (Hood River, OR, USA)

	Caleb Seekell (Charlestown, RI, USA)

	Dave Rich (Cambridge, ON, CANADA)

	Tracey Berg-Fulton (Pittsburgh, PA)

	Juan Mejías (Seville, Spain)

	Mladen Cvijanovic (Buffalo, NY, USA)

	Kendra Hunter (Rochester, NY)

	Roxana Soetebeer (New Brunswick, Canada)

	Bulbul Ahmed (Charlottesvill, VA, USA)

	Minna Hannula (Finland)

	Mark Orders (UK)

	Alan Ryder (UK)

	Robert Riemann (DE)

	Grant Carlson (Sunnyvale, CA, USA)

	Zachary Christman (Philadelphia, PA, USA)

	Per Winterdijk (the Netherlands)

	Paul Featonby (UK)

	Lisa Morales (California, USA)

	Rob Neu (wife, Utah, USA; sister-in-law, Virginia, USA)

	Nancy Simons (SW France)

	Jill Gordon (UK)

	Elwin Versluis (Abcoude, The Netherlands)

	Carling Lellock (Pittsburgh, PA, USA)

	Walter Feddern (Ontario, Canada)

	Abigail Cember (Ardmore, PA, USA)

	Megann Fuka (Tulsa, OK, USA)

	Ariane Fleming (Seattle, WA)

	Sarah Withee (Pittsburgh, PA, USA)

	Daniel Noor (TN)

	Raymond Richmond (Edmonton, AB, Canada)

	Hosam El Din Mohamed El Nagar (Cairo, Egypt)

	Mary Anne Patton (Brisbane, Australia)

	Jared Bechard (Overland Park, KS, USA)

	Tyler Duncan (Lethbridge, Alberta, Canada)

	Eran I (Israel)

	Mikko Kesti (Vantaa, Finland) Intel Edison

	Jan Schenk (Munich, Germany)

	Jess Phoenix (London, UK)

	Kelly Polster (Fort Worth, TX)

	Corey Stoerner (Phoenix, AZ)

	Chris Wallis (Brisbane, QLD, Australia)

	Dave Gourley (Kaysville, UT)

	Chris Heywood (Manchester, UK)

	Grahame Cottam (Newcastle upon Tyne, UK)

	Norman Seward (Cardiff, Wales. UK)

	Luminary Xion (Tokyo, Japan)

	Nika Beros (Zagreb, Croatia)

	Katja Jacob (Seattle, WA)

	Paul Benedict (Evergreen, CO)

	Luis Toussaint (Tarragona, ES)

	Dana Sturdivant (Washington, D.C.)

	Jakub Tomaszczyk (Gold Coast, Australia)

	Andrew Hopkins (Newcastle, Australia)

	Robert Clark (Canberra, Australia)

	David Vanier (Saratoga Springs, NY, USA)

	Kirsten Otis (Guelph, Ontario, Canada)

	Natalia Stanichevsky (Ontario, Canada)

	Patrick Gauthier (Toronto, Ontario, Canada)

	Anne Evered (Philadelphia, PA)

	Or Loantz (Israel)

	Marsha Vasserman (Calgary, Alberta, Canada)

	Melanie Ellis (Auckland, New Zealand)

	Kelsey Mosley (Saint Joseph, MN, USA)

	David Klapan (Osijek, Croatia)

	Grant M. Beahlen (Macomb Co., MI,)

	Nobu Aoki(Hyogo,Japan)

	Kim & Remy Scott (Cambridge, MA)

	Susanne Röckl (Berlin, Germany)

	Jose Rico (Bilbao, Spain)

	Sara Gardiner (Bicester, UK)

	Mark Fletcher (Ipswich. UK)

	Colum Keegan (Wicklow, Ireland)

	Seamus Keegan (Wicklow, Ireland)

	Nicholas Taylor (London, UK)

	Andre Champigny (Moncton, New-Brunswick, Canada)

	Martin Fredheim (Oslo, Norway)

	John Clifton (Sussex, UK)

	Pam Kavanagh (Kildare, Ireland)

	Igor Chambon (Sao Paulo, Brazil)

	Nigel Lund (Adelaide, Australia)

	Taivo Liiv (Estonia)

	Al Jeske (Edmonton, Alberta, CA)

	Erik Schweighofer (Slovakia)

	Mark & Kylie (Halifax, Nova Scotia, CA)

	Aidan Gibson (Portland, OR, USA)

	Mike Sutherland (San Diego, CA)

	Carrie Hefner (Vancouver, WA)

Prev.: Collect your data and get prepared

Next: Visualization and Monitoring

​

 Visualization and Monitoring

Visualization and Monitoring

Nightscout Introduction

Nightscout [http://nightscout.info] (NS) is an open source, DIY project that allows real-time access to CGM data via a personal website, smartwatch viewers, or apps and widgets available for smartphones. Setting up a Nightscout web app is the recommended way to visualize your OpenAPS closed loop. It is required in order to run autotune (highly recommended), which in turn is required if you want to use (e)SMB (an advanced feature of OpenAPS).

Nightscout allows a user to upload CGM data from a variety of sources to an
online database and cloud computing service. The information is then processed
and displayed visually as a graph. There are plugins that allow more
information to be shown about OpenAPS, too. As the data is uploaded to an online
website and then retrieved by OpenAPS, it allows OpenAPS a wider range of
compatibility with various CGM solutions.

Nightscout [http://nightscout.info] is the recommended way to visualize your
OpenAPS closed loop.

Even if you don’t choose to share your Nightscout site
with another person, it will be helpful for you to visualize what the loop is
doing; what it’s been doing; plus generate helpful reports for understanding
your data, customized watchfaces with your OpenAPS data, and integration with IFTTT. You can read more about latest Nightscout features here [http://www.nightscout.info/wiki/welcome/website-features]

NOTE: for the latest up to date instructions on building your first Nightscout, please follow the Nightscout instructions [https://nightscout.github.io/nightscout/new_user/]. Then come back to this page and scroll down for the config variables you’ll want to update.

Nightscout Setup with Heroku

	If you plan to use Nightscout with OpenAPS, we recommend using Heroku, as OpenAPS can reach the usage limits of the free Azure plan and cause it to shut down for hours or days. If you end up needing a paid tier, the $7/mo Heroku plan is also much cheaper than the first paid tier of Azure. Currently, the only added benefit to choosing the $7/mo Heroku plan vs the free Heroku plan is a section showing site use metrics for performance (such as response time). This has limited benefit to the average OpenAPS user. In short, Heroku is the free and OpenAPS-friendly option for NS hosting.

	Create an account at Heroku [https://www.heroku.com] and choose the Primary Development Language to be Node.js when you create your account. You’re going to use a free account, but you will still need to enter credit card information for your account setup before the app will deploy. You’ll need to confirm your Heroku account by clicking a link sent via email.

[image: Heroku signup example]

	Create an account at GitHub [https://github.com]

Note: If you already have an existing GitHub account and NS site, you may just need to update your repository by doing a Compare in GitHub. Use https://github.com/yourgithubname/cgm-remote-monitor/compare/master...nightscout:master and replace “yourgithubname” with your GitHub name. Click the big green Create pull request button. Another screen will appear, fill in a title and click button to create the pull request, and then you can Merge pull request, and finally Confirm merge. That process updates your Nightscout repository in GitHub. Once updated, you can skip the “click the Fork Button” step below and start following along with the purple Deploy to Heroku button step from your updated Nightscout cgm-remote-monitor repository.

	Go to the Nightscout cgm-remote-monitor repository [https://github.com/nightscout/cgm-remote-monitor]

	Click the Fork button in the upper right corner

[image: Fork example]

	Where it says Branch: master (to the far-left of the green “Clone or download” button), click on it and choose dev. This button should then say Branch: dev.

	Scroll down until you see the purple Deploy to Heroku button. Click that button.

[image: Deploy to heroku button]

	Give your app a name, this will be the prefix of your NS site’s URL. For example, https://yourappname.herokuapp.com

	Fill out the information lines in the Config Variables Section of that page. Some of the lines can stay with the default entries already provided.

Click here to expand the list of the Config Variables you need to enter:

 Understanding your OpenAPS rig

Understanding your OpenAPS rig

Pi HAT rig

After April 2018, there is a Pi+HAT rig as an option for closing the loop with OpenAPS. The HAT can be ordered from the same place that makes the Explorer Board (click here [https://enhanced-radio-devices.myshopify.com/products/900mhz-explorer-hat?variant=1950212653065]. We call it the “Explorer HAT”, to differentiate from the Explorer “Board” that goes with the Edison.

[image: Explorer Hat]

Getting Physical: Build your Pi/HAT rig

If you chose a “Pi Zero WH” (with headers), you will place the HAT on the Pi.

Buttons and Menu System

The Explorer Board Pi HAT includes a 128x64 OLED display with two general purpose buttons to navigate an included menu system.

Button Navigation

The Pi HAT has two general purpose buttons labeled “Up” and “Down”. A single press of the “Up” button will move the menu selection cursor up a single menu item and a single press of the “Down” button will move the menu selection cursor down a single menu item.

A double press of the “Down” button will enter in currently selected menu item as indicated by the “>” next to a menu item.

A double press of the “Up” button will take you back to the previous screen.

Menu Items

The current tree of available menu items (click to expand):

 Entering carbs & doing boluses

Entering carbs & doing boluses

How do you enter carbs & do boluses with OpenAPS? You have a variety of ways to do things.

Doing boluses

	Easy bolus button: Previously before OpenAPS, you probably used the easy bolus button [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/collect-data-and-prepare.html#easy-bolus-button] to add up a bolus in increments. (E.g. if your pump had increments of 0.5u, you could quickly dial up to a bolus by pressing the up button as many times as needed; hitting enter to confirm it; hitting enter again to deliver the bolus.)

	Bolus wizard: Or, you may have used the bolus wizard, sometimes with BG or carb entry, or just as a bolus.

In OpenAPS, you can still use those same methods for delivering manual doses of insulin (boluses).

Entering carbs into OpenAPS

Before OpenAPS, you may or may not have entered carbs into your pump. With OpenAPS, most people do want the rig to know about carbs. You have a variety of ways to enter them, depending on whether your rig is online or offline.

Look at this image for the big picture:

[image: Different methods for entering carbs]

Offline carb entry

	You can still use the bolus wizard to enter carbs, although a non-zero amount of bolus must be delivered in order for OpenAPS to record the carbs. If you adjust the bolus recommended by the bolus wizard down to zero and deliver the zero units (as you might ordinarily do if you ate carbs in order to treat a low), the pump may (depending on your pump version) fail to record a bolus wizard record in pumphistory, causing OpenAPS to ignore the carbs as if you hadn’t entered them. In that situation, consider delivering the smallest unit of bolus possible (like 0.05u or 0.1u) so that OpenAPS will record the carbs entered into the bolus wizard.

	Some pumps can use the ‘meal marker’ feature [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/offline-looping-and-monitoring.html#entering-carbs-while-offline].

	See section on extended and dual wave substitutes [https://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/collect-data-and-prepare.html#extended-and-dual-wave-substitute] for information on how extended boluses are handled in OpenAPS.

Online carb entry

If your rig is online, you have a variety of ways to enter carbs online.

	Nightscout care portal

	AndroidAPS NS Client (Download the app-nsclient-release APK from here [https://github.com/MilosKozak/AndroidAPS/releases].)

	Many options for using IFTTT to get carbs into Nightscout Care portal. (See the IFTTT page here for instructions [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/ifttt-integration.html].)
	Pebble or Apple watch

	Google Calendar

	Siri, Alexa, Google, etc.

	Android users: you can use the Care portal option in NSClient app found here [https://github.com/nightscout/NSClient-Android/releases].

Prev.: Understanding your OpenAPS rig

Next: Understanding the determine-basal logic

​

 Understanding the determine-basal logic

Understanding the determine-basal logic

The core, lowest level logic behind any oref0 implementation of OpenAPS can be found in oref0/lib/determine-basal/determine-basal.js [https://github.com/openaps/oref0/blob/master/lib/determine-basal/determine-basal.js]. That code pulls together the required inputs (namely, recent CGM readings, current pump settings, including insulin on board and carbohydrates consumed, and your profile settings) and performs the calculations to make the recommended changes in temp basal rates that OpenAPS could/will enact.

Basic diabetes math

OpenAPS follows the same logic that a person with diabetes uses to make dosing decisions. Generally, this means looking at the current BG; subtracting the target; and applying your ISF (correction factor) to determine how much insulin is needed to correct the blood sugar to target. You can subtract any “insulin on board” from the amount needed. You can also add insulin needed to cover carbohydrates.

In OpenAPS, we can do both a positive (more insulin) and a negative (less insulin) correction by making adjustments to your underlying basal rates to adjust insulin up or down to help bring the “eventual” BG into target.

OpenAPS decision inputs

In OpenAPS, we take the same inputs you would use to manually decide what to do, but we also factor other things into our calculation.

This includes:

	Blood glucose information
	delta = change in BG between glucose (most recent BG) and an average of BG value from between 2.5 and 7.5 minutes ago (usually just a single BG value from 5 minutes ago)

	glucose = most recent BG

	short_avgdelta = average rate of change (per 5m) in BG values between glucose (most recent BG) and each BG reading from 2.5 to 17.5 minutes ago

	long_avgdelta = average rate of change (per 5m) in BG values between glucose (most recent BG) and each BG reading from 17.5 to 42.5 minutes ago

	Past insulin dosing information, pulled from your pump
	iob = Units of Insulin on Board (IOB), net of your pre-programmed basal rates. Net IOB takes all pre-programmed basal, OpenAPS temp basal, and bolus insulin into account. Note: iob can be negative when OpenAPS temp basal rate is below your pre-programmed basal rate (referred to as “low-temping”). This will always be different than pump-calculated IOB, because it only takes into account boluses - ignore pump IOB. This is a high level overview, but you can dive into more detail around how insulin activity is calculated here [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/understanding-insulin-on-board-calculations.html].

	basaliob = Units of net basal Insulin on Board (IOB). This value does not include the IOB effects of boluses; just the difference between OpenAPS temp basal rates and your pre-programmed basal rates. As such, this value can be negative when OpenAPS has set a low-temp basal rate.

	bolusiob = Units of bolus Insulin on Board. Does not take into account any temp basals.

	We also add other calculations that we do to better predict and analyze what is happening:
	dev or deviation = how much actual BG change is deviating from the BGI

	BGI (Blood Glucose Impact) = the degree to which BG “should” be rising or falling based on insulin activity alone.

	ISF (Insulin Sensitivity Factor; sometimes known as correction factor) = ISF is anchored from the value in your pump; but if you use autotune and/or autosens, the ISF value shown is what is currently being used by OpenAPS, as modified by the Sensitivity Ratio

	CR (Carb Ratio) = As with ISF, it is anchored from the value in your pump; but if you use autotune and/or autosens, the CR value shown is what is currently being used by OpenAPS

	Eventual BG= what BG is estimated to be by the end of DIA

	minGuardBG, IOBpredBG, UAMpredBG = eventual BG predictions based on 1) the lowest your BG is estimated to get over DIA; 2) predictions based on IOB only; and 3) predictions based on current deviations ramping down to zero at the same rate they have been recently. These represent the last entry on the purple prediction lines.

	Sensitivity Ratio = the ratio of how sensitive or resistant you are. This ratio is calculated by “Autosensitivity” (or “autosens”), and this ratio is applied to both basal and ISF to adjust accordingly. <1.0 = sensitive; >1.0 = resistant. If your preferences allow it, sensitivityRatio can also be modified by temp targets.

	Target = pulled from your pump target; overridden if you have enacted a temporary target running.

	Carb Impact = we estimate carb impact by looking at what we predict to happen with your carbs entered (predCI) and adding it to our estimate of the remaining carb impact (remainingCI)

	Safety Threshold = min_bg - 0.5*(min_bg-40) where min_bg is your BG target

You may also see information about settings, either from your pump or from your preferences.json file, that are limiting the insulin dosing decisions that OpenAPS would otherwise make. Make sure to read the preferences page [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/preferences-and-safety-settings.html] before you set up OpenAPS to understand what settings you have by default, and know how to get back to that page if you ever see a setting displayed in your pill. There is also a handy chart with examples [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/preferences-and-safety-settings.html#a-few-examples] to help you understand how settings may impact the dosing output.

OpenAPS decision outputs

After taking into account all of the above, oref0 will put out a recommendation of what needs to be done. This also includes the explanation of the variables above, so you can check and assess if you think it’s doing the right thing. Generally, it will display all of the above values, plus the output of the decision of any temporary basal rates and/or boluses it decides it needs. This is the “reason” field.

	Temp basals will be displayed with the duration (length of time temp basal will run. A duration of 0 indicates none is running) and rate (units/hr basal rate).

	You may also see insulinReq, showing how much insulin is needed. This usually displays when OpenAPS is prepping to issue SMB’s (an advanced setting [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/oref1.html]).

Understanding the purple prediction lines

Once you enable forecast display in your Nightscout configuration, you will be able to see multiple purple line predictions. To do this, click the three dots next to your timeframe horizon (3HR, 6HR, 12HR, 24HR) and then enable “Show OpenAPS Forecasts”. Once enabled, you will have multiple purple line predictions in Nightscout. These purple lines show you the different predictions based on current carb absorption; insulin only; (optional feature: unannounced meal/effect detection); and showing how long it will take BG to level off at/above target if deviations suddenly cease and we run a zero temp until then.

These purple lines are helpful in understanding, at a glance, why OpenAPS is making the decisions it is, based on your near-term and longer-term BG predictions.

[image: Purple prediction line examples]

Understanding the basic logic (written version)

Here is a written explanation of the code that you can explore. For some visual and practical examples, see the OpenAPS algorithm examples [https://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/Understand-determine-basal.html#openaps-algorithm-examples] section.

The OpenAPS reference design algorithm, oref0, determines insulin dosing based on a number of scenarios that it forecasts with different types of predictions. Two of these scenarios, the “eventual” (eventualBG) and “IOB-based” (IOBpredBGs) ones, attempt to predict BGs in situations without (much) carb absorption. Another scenario, the “zero-temp” (ZTpredBGs) one, attempts to predict the “worst likely case” if observed carb absorption suddenly ceases and if a zero-temp were applied until BG begins rising at/above target. The final two scenarios, the COB-based (COBpredBGs) one and the unannounced meal (UAM)-based (UAMpredBGs) one, attempt to predict how long an observed BG rise will continue, to dose appropriately for announced and unannounced meals, and for anything else that causes a sustained rise in BG.

COB-based BG predictions require the announcement of meals, with a rough estimate of carbs. Carb counting need not be precise: any estimate within 1.5x of the actual value will generally be sufficient for near-optimal dosing, as the COB-based and UAM-based predictions are blended (with the UAM-based dosing constrained by the zero-temp predictions) to generate dosing recommendations. If no carb announcement is provided, UAM-based predictions can be used to reactively dose for a meal rise, which is sufficient, with Fiasp, to bring BG back into range fairly quickly after unannounced meals.

When no carb announcements are available, or when announced carbs are mostly absorbed and COB-based predictions are less reliable, it is also possible to predict that observed deviations will gradually return to zero over some period of time. (A “deviation” term is calculated represent how much BG is currently rising or falling relative to what it should be doing based solely on insulin activity.) Once deviations have peaked and are decreasing at a reasonable rate, oref0’s UAM calculations assume that the deviations will continue to decrease at the same rate until they reach zero. If they’re decreasing, but too slowly, it assumes they’ll decrease linearly to zero over 3 hours. If deviations are still increasing, it assumes they’ll peak immediately and start decreasing at ⅓ of the rate they increased from their recent minimum.

eventualBG

Click here to expand the eventualBG description
The simplest and oldest prediction, called eventualBG, uses traditional bolus calculator math.

 Understanding all the ways to monitor your rigs

Understanding all the ways to monitor your rigs

There are two general groups of ways to monitor your rigs:

	Online, meaning it requires the rig to have internet connectivity (via a wifi or hotspot/tethered connection)

	Offline, meaning the rig does not have any internet connectivity

[image: Examples of online and offline monitoring]

The main ways of monitoring your rig ONLINE include:

	Papertrail [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#papertrail-remote-monitoring-of-openaps-logs-recommended]

	Accessing via SSH (either using an app on your phone, or your computer) [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#accessing-your-online-rig-via-ssh]

	Nightscout [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/nightscout-setup.html]

	AndroidAPS NS Client (Download the app-nsclient-release APK from here [https://github.com/MilosKozak/AndroidAPS/releases].)

	Pebble watch (your watchface of choice, such as Urchin [https://github.com/mddub/urchin-cgm])

	Apache Chainsaw [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#apache-chainsaw]

The main ways of monitoring your rig OFFLINE include:

	Pancreabble [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#pancreabble-offline-connection-to-pebble-watch] (offline connection to your Pebble watch)

	For Android users: “Hot Button [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#hot-button-for-android-users]“

	Accessing via SSH over Bluetooth [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#accessing-your-offline-rig-via-ssh-over-bluetooth], or by using a mobile router so your phone/rig can connect to the same network offline [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#accessing-your-offline-rig-via-ssh-when-your-phone-and-rig-are-connected-to-the-same-network]

	For any phone type: Creating a web page that can be accessed on the phone via the rig’s IP address [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#offline-web-page-from-rig-for-any-phone-user]

You’ll probably come back to this page later to setup different monitoring options

At this point, if you’re not yet set up on OpenAPS, you won’t quite be ready to set up all of the below options for accessing your rig - because your rig is not built yet! But, just know that there are different “online” and “offline” ways to monitor your rig, so you’ll want to think about your preferences for both situations, and know that the instructions on the rest of this page are here when you’re more familiar and are ready to set up some or all of them.

Accessing your online rig via SSH

See below for different ways to access your rig:

	If your computer and rig are on the same wifi network [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#if-your-computer-and-rig-are-on-the-same-wifi-network]

	If your computer and rig are on different wifi networks [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#if-your-computer-and-rig-are-on-different-wifi-networks]

	If your iPhone and rig are on the same wifi network [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#if-your-iphone-and-rig-are-on-the-same-wifi-network]

If your computer and rig are on the same wifi network

[image: If your computer and rig are on the same wifi network]

For Mac computers

	Open the Terminal App found in the Utilities folder in Applications.

	Use the command ssh root@edisonhost.local (or whatever you named your edison host, in the example below, the hostname was edison1). If this is your first time logging in to the rig on the computer, you may get a message about the authenticity of the host and whether you want to add the key fingerprint to the list of known hosts. Go ahead and answer yes. You will be asked for the password for the rig...enter your root password that you setup in Phase 0 (the default was edison). Realize that keystrokes will not appear as you enter the password. A successful login will result in a screen similar to below.

[image: Mac ssh login]

	If you get an error about “could not resolve hostname”, it is likely that your rig is actually connected to a different wifi network than the computer. Try the screen method (directions below) for connecting to your rig.

[image: Mac ssh unknown host]

	If you get an scary looking error about “WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!” that is likely because you are attempting to login to a rig that has the same hostname as a previous rig that has been logged into on the computer. (This is why you want to use unique hostnames if you are going to have multiple rigs.) You can delete the history of known hosts for the rig by entering the commands cd .ssh and then rm known_hosts. This will delete the log of known hosts on your computer. There’s no significant downside to removing the known_host log, except that you will need to answer yes to the key fingerprint additions again for the first time you login to old rigs again. After you delete the known hosts, you can use the ssh root@edisonhost.local command to login, as described above.

[image: Mac spoofing error]

For Windows computers

	Open PuTTY program

	Click the SSH radio button and then enter the IP address of the rig on the “Host Name” line in PuTTY.

[image: Windows IP address for rig]

	If you do not know the IP address of the rig, you can obtain it by first logging on using Serial connection (described below) and using the command ifconfig.

[image: Windows IP address for rig]

	Click the “Open” button in the PuTTY window and, if this is your first time logging into the rig using PuTTY using ssh, you may see a warning regarding the server’s host key. Click yes to add the host key to PuTTY’s cache.

[image: Windows key hostname]

	Login using login name root and password is whatever you changed it to during setup in Phase 0. The default password was edison. As you type the password, no keystrokes will appear on the screen. Successful login will leave you at a prompt for the root user.

[image: Windows IP address for rig]

If your computer and rig are on different wifi networks

[image: If your computer and rig are on different wifi networks]

Access to the rig will need a cable to connect the UART port on the rig with the USB port on the computer. You will need a cable capable of transmitting data. If you try all of the steps below and are unsuccessful at connecting, try a new cable.

For Mac computers

	Use the Terminal app on the Mac, or follow these directions for Windows [http://openaps.readthedocs.io/en/latest/docs/Resources/Edison-Flashing/all-computers-flash.html#if-you-re-using-a-windows-pc-for-console]

	If you’re using a Mac, use the command sudo screen /dev/tty.usbserial-* 115200 to enable “screen” mode. You will be prompted to enter a password. Enter your computer’s password not the rig’s password here.

[image: Mac Screen first password]

	You may see a blank screen. Press RETURN to bring up the edison’s login screen. Login as root and use your root password (you should have changed it from the default of edison during the setup of the rig - if not, please go back and do so now [http://openaps.readthedocs.io/en/latest/docs/Resources/Edison-Flashing/all-computers-flash.html#initial-edison-setup]. A successful login will look like below.

[image: Mac Screen successful login]

	If instead, you see a message at the bottom of the screen that says “Sorry, could not find a PTY.” that usually means the system has not cleared a previous screen session. If you only had the rig connected by one cable in the UART port on rig, you can simply unplug the rig from the computer and move to a new USB port on the computer. If you don’t have any “new” USB ports that were not used by the previous login attempt, then close out terminal app, restart the computer, and try again. This will clear the error.

[image: Mac Screen message for busy port]

	If instead you see a message at the bottom of the screen that says “Cannot exec ‘/dev/tty.usbserial-*‘: No such file or directory”, double check that you have your rig and computer connected via the rig’s UART port. Using the OTG port will cause this error message. Or typos in the screen command will have same result. Double check your spelling, or better yet...use copy and paste whenever possible.

[image: Mac Screen message for OTG port]

For Windows Users

	Navigate to your Control Panel and then to Device Manager. Click on the Ports to open your USB serial port. Find the COM port that the rig is connected to. In the screenshot below, COM7. Note: different USB ports will have different numbers. If you regularly plug your rig into the computer and use this connection type, you may need to make sure you update the COM number in the steps below if you are switching between different USB ports.

[image: Windows COM port number]

	Open PuTTY program. Click on the Serial radio button, enter the COM number you got from the previous step into the Serial line number and change the speed to 115200. Click on Open button.

[image: Windows serial setup]

	Enter root for the login and the password is whatever you changed it to during setup in Phase 0. The default password was edison. As you type the password, no keystrokes will appear on the screen. Successful login will leave you at a prompt for the root user as shown below.

[image: Windows serial login success]

autossh Reverse Tunnel

If you have an ssh server that is always accessible on the Internet, you can use it as a known hop point to ssh into your rig as long as the rig has an Internet connection.

On the rig, install autossh: apt-get install autossh

Your ssh environment must be setup to use key based authentication. (Basic instructions are here [https://www.debian.org/devel/passwordlessssh].)

On the rig, add the lines below to the /etc/ssh/ssh_config file.

 ServerAliveInterval 60
 ServerAliveCountMax 5

On the server, add the lines below to the /etc/ssh/sshd_config file.

 ClientAliveInterval 60
 ClientAliveCountMax 5

The configuration values above ensure when the rig moves from wifi network to wifi network, it will require 5 minutes at most for autossh to establish a new link to the server.

Test the ssh setup by executing autossh on the rig:

autossh -f -M 0 -T -N <userid>@<Internet server address> -o "ExitOnForwardFailure yes" -R 20201:localhost:22

Test ssh into the rig from another device by ssh to the internet server address on port 20201 instead of the default port 22:

-connect to the internet server
-from that server:

ssh -l root -p 20201 localhost

Once the test are successful, add a line to your rig crontab to launch autossh at boot using the autossh command above:

@reboot autossh -f -M 0 -T -N <userid>@<Internet server address> -o "ExitOnForwardFailure yes" -R 20201:localhost:22

Papertrail remote monitoring of OpenAPS logs (RECOMMENDED)

If you want to remotely view the rig’s logs/loops, you can use Papertrail service. We HIGHLY recommend setting up this service for at least the first month of your OpenAPS use to help remotely and quickly troubleshoot your rig, if you have problems. The first month of Papertrail comes with a very generous amount of free data. If you decide you like the service, you can sign up for monthly plan. Typically, the monthly cost for using Papertrail with OpenAPS is approximately $5-7 depending on how many rigs you use and how long you’d want to save old data.

Get an account at Papertrail

Go to http://papertrailapp.com and setup a new account. Choose to setup a new system. Notice the header at the top of the new system setup that says the path and port that your logs will go to. You’ll need that information later.

[image: Papertrail hosting information]

System logging

Login to your rig. If you need help with that, please see the Accessing Your Rig [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#accessing-your-online-rig-via-ssh] section of these docs. Copy and paste the code that is displayed in your new system setup’s shaded box, as shown in the red arrowed area in the screen shot above. This will setup papertrail for just your syslogs. But, we now will need to add more (aggregate) your logs such as pump-loop and ns-loop.

Aggregating logs

	Copy and paste each of these four command lines, one at a time. The screenshot below shows the successful results of each command. The first command will run for a short time and end with similar information to the green box. The remaining three commands will not display anything specific as a result of the command.

For Intel Edison rigs, use:

wget https://github.com/papertrail/remote_syslog2/releases/download/v0.19/remote_syslog_linux_i386.tar.gz

For Raspberry Pi rigs, use:

wget https://github.com/papertrail/remote_syslog2/releases/download/v0.18-beta1/remote_syslog_linux_arm.tar.gz

Then, for either rig type, run:

tar xzf ./remote_syslog*.tar.gz

cd remote_syslog

sudo cp ./remote_syslog /usr/local/bin

[image: Papertrail aggregating]

	Create the file that will store all the logs you’d like to aggregate:

vi /etc/log_files.yml

	press “i” to enter INSERT mode, and then copy and paste the following (updating your host and port on the lines shown to match what your new system info shows as described above):

files:
 - /var/log/openaps/pump-loop.log
 - /var/log/openaps/autosens-loop.log
 - /var/log/openaps/ns-loop.log
 - /var/log/openaps/network.log
 - /var/log/openaps/autotune.log
 - /var/log/openaps/cgm-loop.log
 - /var/log/openaps/pushover.log
destination:
 host: logs5.papertrailapp.com # NOTE: change this to YOUR papertrail host!
 port: 12345 # NOTE: change to your Papertrail port
 protocol: tls

type ESC and ”:wq” to save changes and exit.

	Start a new aggregate

sudo remote_syslog

Now you should be able to see your new logs in your papertrail, but we need to make it so this runs automatically when the rig is restarted.

Install auto restart at reboot

	Create a new file that will restart the papertrail logging at reboot

vi /etc/systemd/system/remote_syslog.service

	press “i” to enter INSERT mode, and then copy and paste the following:

[Unit]
Description=remote_syslog2
Documentation=https://github.com/papertrail/remote_syslog2
After=network-online.target

[Service]
ExecStartPre=/usr/bin/test -e /etc/log_files.yml
ExecStart=/usr/local/bin/remote_syslog -D
Restart=always
User=root
Group=root

[Install]
WantedBy=multi-user.target

type ESC and ”:wq” to save changes and exit.

	enable the reboot service by using these two commands, one at a time.

systemctl enable remote_syslog.service

systemctl start remote_syslog.service

	reboot your rig to test the papertrail

reboot

and then go to your papertrailapp website to see the log

[image: papertrail log example]

Optimize Papertrail use

To make the most of your Papertrail logs, setting up some of your account settings and filters will help streamline your troubleshooting

Account Filters

Adding filters to your incoming Papertrail logs will help minimize unuseful data (and help keep you below your data caps) and streamline your review of your relevant OpenAPS logs. You can go to your Papertrail account’s Settings and then choose the Log Destinations. Click on Log Filters to go to the screen where you can add specific filters.

[image: papertrail log destinations]

Click on the Add Log Filter button and add three filters for CRON, libmraa, and sudo. Save the changes and within 60 seconds, your logs will be filtered. The CRON, libmraa, and sudo logs usually provide very little help for troubleshooting OpenAPS problems. You can always undo these filters, if you want to see what those provide in the future.

[image: papertrail log filters]

Saved Searches

Unfortunately, Papertrail does not currently have an app for use on mobile devices. Instead, you will be using an internet browser to view your papertrail. Setting up saved searches, in advance, can help you sort through your logs more efficiently. Most OpenAPS troubleshooting will involve either wifi connection issues or pump communications. Some helpful searches to save in order to find those issues fastest are:

	pump-loop.log to see just your pump loop...similar to using the l command when logged into your rig.

	network will show just your oref0-online results and whether/which wifi network your rig is connected to. If you see results of 192.168.1.XX, then your rig is likely connected to a wifi network. If you see results of 172.20.10.XX then your rig is likely connected to your phone’s personal hotspot. If you see error, cycling network results, you should check out troubleshooting steps.

	pump-loop.log adjust will show your basal and ISF adjustments being made by autosens, if enabled.

If you are running multiple rigs, you can also setup these searches to include the hostname of a particular rig, if you want to see results just for that rig. For example, this screenshot below would be saving a search for a particular rig with the hostname of edison1 and only for its pump-loop.log.

[image: papertrail log filters]

Once you get your desired searches saved, it is an easy process to make them more accessible on your mobile device by using its browser’s add to homescreen button. For example, below are the quick links to the saved searches for an OpenAPS user with three rigs...

[image: papertrail homescreen buttons]

Troubleshooting using Papertrail

Papertrail can be very valuable to quickly troubleshoot a rig, because it is quite easy to see all the loops that log information about your rig’s actions. BUT, the way that the information comes into Papertrail is based on the time the action took place. So, you’ll be seeing information stream by that may or may not help you troubleshoot WHICH area your issues are.

First, let’s start with messages that ARE NOT ERRORS

	Anything in the first 15 minutes (pretty much) of a new loop setup. Let the loop run for 15 minutes before you start to investigate the messages. Many messages resolve themselves during that time, such as cat: enact/enacted.json: No such file or directory is because the loop hasn’t enacted a temp basal suggestion yet...so the file doesn’t exist.

	Radio ok. Listening: .No pump comms detected from other rigs This message is NOT an error. This means your rig is checking to make sure it is not interrupting another rig that may already be talking to your pump. It’s being polite.

	[system] Failed to activate service 'org.freedesktop.hostname1': timed out This message is NOT an error. Jubilinux does not use the hostname service...so it does not activate.

	Many messages that say there are failures, are not really failures for your rig. For example, there are a lot of scary looking messages when your rig is changing networks from wifi to/from BT...an unfiltered papertrail will show every message like this:

[image: papertrail homescreen buttons]

But, really, most of those messages are the normal course of the rig telling you what’s going on. Like “Hey, I seem to have disconnected from the wifi...I’m going to look for BT now. Hold on. I need to organize myself. Bringing up my stuff I need to find BT. Ok, found a BT device. Well, I can connect to it, but some of the features I don’t need...like an audio BT connection.” But, the rig doesn’t speak English...it speaks code. So, if you don’t speak code...sometimes a filter for network might help you filter for the English bits of info a little better. Here’s what that same period of time looked like with a network filter applied. It’s a little more clear that my rig was changing from a BT tether to a wifi connection when you filter the results.

[image: papertrail homescreen buttons]

Therefore when you start to troubleshoot, USE YOUR FILTERS to narrow down the logs that you are looking at. Here are some specific errors/issues you may find.

PUMP TUNING

Use pump-loop search filter to start with. What messages are you seeing? Poor pump comms are one of the most frequent causes of loops stopping. If you see 916, 0, -99 tuning results, then you know that your rig is not getting a usable communication with your pump. Try moving your pump and rig closer together. Check if your pump battery is good.

[image: papertrail poor pump tune]

Ideally you should be seeing pump tuning somewhat like the filter for mmtune below shows...this is a kid at school, carrying the rig in a purse/backpack. Some periods of time she leaves her rig behind (like PE class) and other shorter times where there’s poor pump comms. But, generally speaking seeing mmtune results in the 70s and 80s will sustain good looping.

[image: papertrail mm tune]

GIT LOCK

There are files that get written to in a directory called /root/myopenaps/.git Sometimes a process crashes and causes a file in that directory to get locked and the writing can’t continue. Your loop may fail as a result. This can be a short term issue, and it could resolve on its own...other times it may require you to delete the file that is causing the problem. For example, below is a short-term error. The message says there is a problem in the /root/myopenaps/.git and I may need to remove that file to get things going again. However, you can also see that a few minutes later, the problem resolved on its own.

If you find a .git lock error is causing a long period of time where your loop is failing, you can remove the file, as the error suggests by using rm -rf /root/myopenaps/.git/filename or you can delete the whole .git directory (it will get rebuilt by the loop automatically) with rm -rf /root/myopenaps/.git

[image: papertrail git lock]

FLAKEY WIFI

Having flaky router or wifi issues? Some routers or ISPs (I still haven’t completely determined the cause) will not work nice with the Avahi-daemon. What the means for you...spotty time staying connected to your wifi. Does your rig not loop consistently? Sometimes are you getting kicked out of ssh sessions with your rig? Look for the message shown in the screenshot below:

[image: papertrail avahi error]

Or alternatively, if you see this message when you login to your rig:

[image: papertrail avahi at login]

The solution to this is to login to your rig and use this command systemctl disable avahi-daemon as shown below

[image: papertrail avahi disable]

AND also make this edit using vi /etc/default/avahi-daemon Change the number on the last line from 1 to 0 so that it reads AVAHI_DAEMON_DETECT_LOCAL=0 as shown in the screenshot below. (remember i to enter INSERT mode for editing, and esc and :wq to save and exit the editor)

[image: papertrail avahi disable]

reboot your rig after the change to enable the fix.

subg_rfspy state or version??

If your loop is failing, lights are staying on, and you see repeated error messages about “Do you have the right subg_rfsby state or version?” as below, then you need to head to this section of docs [http://openaps.readthedocs.io/en/latest/docs/Resources/troubleshooting.html#could-not-get-subg-rfspy-state-or-version-have-you-got-the-right-port-device-and-radio-type] to fix that issue. Don’t worry, it is a 5 minute fix. Very straight-forward.

[image: papertrail subg error message]

[image: papertrail subg lights]

Apache-chainsaw

[image: Apache picture]
If your computer and rig are on the same wifi network you can use Apache Chainsaw2 from a pc (running windows/mac/linux) to watch your logs. Chainsaw2 main advantages are:

	Easy setup.

	Strong filtering capabilities.

	Strong finding capabilities.

	Coloring capabilities.

	Adding marker capabilities.

	Logs can be searched for a long time (kept localy on the rig).

	Can tail new data.

example picture:

To setup apache chainsaw on your computer, follow the following instructons:

	Download the following version of apache chainsaw from here: https://github.com/tzachi-dar/logging-chainsaw/releases/download/2.0.0.1/apache-chainsaw-2.0.0-standalone.zip (please note this version was changed to fit the openaps project, other releases of appach chainsaw will not work with a rpii).

	Unzip the file.

	On your pc, create a configuration file called openaps.xml with the following data (for example notepad openaps.xml):

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration >
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" debug="true">
 <appender name="A2" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.SimpleLayout"/>
 </appender>

 <plugin name="VFSLogFileReceiver1" class="org.apache.log4j.chainsaw.vfs.VFSLogFilePatternReceiver">
 <param name="fileURL" value="sftp://root:password@192.168.1.20:22/var/log/openaps/openaps-date.log"/>
 <param name="name" value="sampleVFSLogFileReceiver1"/>
 <param name="tailing" value="true"/>
 <param name="timestampFormat" value="yyyy-MM-dd HH:mm:ss"/>
 <param name="logFormat" value="TIMESTAMP LOGGER MESSAGE"/>
 <param name="autoReconnect" value="false"/>
 <param name="group" value="group"/>
 </plugin>

 <root>
 <level value="debug"/>
 </root>
</log4j:configuration>

Make sure to replace the password, with your rig’s password, and 192.168.1.20 with the ip/hostname of your rig.

	run chainsaw by the command: bin\chainsaw.bat (pc) or bin/chainsaw (linux and mac)

	From the file menu choose ‘load chainsaw configuration’

	Choose use chainsaw configuration file.

	press open file.

	choose the file openaps.xml

	(optional) mark the checkbox “always start chainsaw with this configuration.”

Chainsaw has a welcome tab and a good tutorial, use them.
Still here are a few highlights:

	To see only pump-loop you can either select ‘focus on openaps.pump-loop.log’ or on the refine focus on field enter ‘logger==openaps.pump-loop’

	To filter only messages that contain the words ‘autosens ratio’ enter on the ‘refine focus’ logger==openaps.pump-loop && msg~=’autosens ratio’

	To highlight lines that contain ‘refine focus’, enter msg~=’autosens ratio’ on the find tab.

Accessing your offline rig

Pancreabble - offline connection to Pebble watch

(TO DO Note - Pancreabble instructions for OpenAPS need to be re-worked to reflect the oref0-setup script way of making it work. Below is notes about Pancreabble setup prior to oref0-setup.sh being in existence.)

Pancreabble [https://github.com/mddub/pancreabble] is a way to monitor your loop locally, by pairing a Pebble smartwatch directly with the Raspberry Pi or Intel Edison.

In other words, whereas the default setup looks like this:

Raspberry Pi/Intel Edison -> network -> Nightscout server -> network -> smartphone
 |
 -> laptop
 |
 -> Pebble watch

And by default, your Pebble is paired thus:

 smartphone -> Bluetooth -> Pebble watch

With Pancreabble, the setup looks like this:

Raspberry Pi/Intel Edison -> Bluetooth -> Pebble watch

Using a Pebble watch can be especially helpful during the “open loop” phase: you can send the loop’s recommendations directly to your wrist, making it easy to evaluate the decisions it would make in different contexts during the day (before/after eating, when active, etc.).

See Pancreabble [https://github.com/mddub/pancreabble] for initial setup instructions.

Once you’ve done the first stages above, you’ll need to do generate a status file that can be passed over to the Pebble Urchin watch face. Fortunately, the core of this is available in oref0.

Go to ~src/oref0/bin and look for peb-urchin-status.sh. This gives you the basic framework to generate output files that can be used with Pancreabble. To use it, you’ll need to install jq using:

apt-get install jq

If you get errors, you may need to run apt-get update ahead of attempting to install jq.

Once jq is installed, the shell script runs and produces the urchin-status.json file which is needed to update the status on the pebble. It can be incorporated into an alias that regularly updates the pebble. You can modify it to produce messages that you want to see there.

When installing the oref0-setup you will need to replace all instances of AA:BB:CC:DD:EE:FF with the Pebble MAC address. This can be found in Settings/System/Information/BT Address. NOTE: Make sure the MAC address is in ALL CAPS.

Once you’ve installed, you will need to pair the watch to your Edison.

Bluetooth setup for Pancreabble

	Restart the Bluetooth daemon to start up the bluetooth services. (This is normally done automatically by oref0-online once everything is set up, but we want to do things manually this first time):

sudo killall bluetoothd

	Wait a few seconds, and run it again, until you get bluetoothd: no process found returned. Then start it back up again:

sudo /usr/local/bin/bluetoothd --experimental &

	Wait at least 10 seconds, and then run:

sudo hciconfig hci0 name $HOSTNAME

	If you get a Can't change local name on hci0: Network is down (100) error, start over with killall and wait longer between steps.

	Now launch the Bluetooth control program: bluetoothctl

	And run: power off

	then power on

	and each of the following:

discoverable on

scan on

agent on

default-agent

On Your Pebble

Settings/BLUETOOTH to make sure Pebble is in pairing mode

from terminal

trust AA:BB:CC:DD:EE:FF
pair AA:BB:CC:DD:EE:FF

you might need to do this several times before it pairs

you will see on the edison

Request confirmation [agent] Confirm passkey 123456 (yes/no): yes

	(WARNING: You must type in yes not just y to pair)

Once paired, type quit to exit.

Currently the peb-urchin-status.sh has 1 notification and 3 different options for urchin messages.
in you APS directory there is a file called ‘pancreoptions.json’

"urchin_loop_on": true, <--- to turn on or off urchin watchface update
"urchin_loop_status": false, <--- Gives a message on urchin watchface that it's running
"urchin_iob": true, <--- Gives a message on urchin watchface of current IOB
"urchin_temp_rate": false, <--- Gives a message on urchin watchface of current temp basal
"notify_temp_basal": false <--- Notification of temp basal when one shows up in enact/suggested.json

note only one of the messages for the urchin watchface can be true at once

the peb-urchin-status.sh gets called from the crontab and will run automatically.
By default the urchin_loop_on, and urchin_iob is set to true. You must manually change notify_temp_basal to true to start getting temp basal notifications. you can edit this file using nano pancreoptions.json from your APS directory.

Hot Button - for Android users

Purpose

NOTE: The Hotbutton app linked below has disappeared from Google Play. There are several others available if you search “SSH Button”, but the app setup instructions won’t match exactlty.

Hot Button app [https://play.google.com/store/apps/details?id=crosien.HotButton] can be used to monitor and control OpenAPS using SSH commands. It is especially useful for offline setups. Internet connection is not required, it is enough to have the rig connected to your android smartphone using bluetooth tethering.

App Setup

To set up a button you need to long click. Then go to Server Settings. For Server’s IP, add the IP address that your rig has when connected to your phone. Under Server’s Port, add the port number 22. Under Authenication Settings, you need to add your rig’s username, password, and the root password. Be sure that the password for the private key file is blank unless you are setting up a key authentication (which is not necessary). Go back to the previous button setup screen and click “Set as default!”. This will save all your server settings so that you can easily load them onto each new button you make.

Basic commands

For the Command part of the button setup you can write any command which you would run in the ssh session. (If you are running a command that would need to be run with root privileges, be sure to check the box “Execute as root!”) Here are some suggested commands:

To show Automatic Sensitivity ratio, you can set:
cat /root/myopenaps/settings/autosens.json
To show the last enacted loop, you can set:
cat /root/myopenaps/enact/enacted.json
To show your rig’s network name, you can set:
iwgetid -r
To show your rig’s battery status, you can set:
cat /root/myopenaps/monitor/edison-battery.json
To show your pump’s battery status, you can set:
cat /root/myopenaps/monitor/battery.json

After setting up the button, simply click it to execute the command. The results are displayed in the black text area below the buttons. You can change the font size of the text in the box, and you can add more buttons under the main Hot Button menu.

Temporary targets

It is possible to use Hot Button application for setup of temporary targets. The oref0 repo has a script named oref0-append-local-target that sets a temp target locally on the rig.

To set an activity mode target of 130 mg/dL for 60m, run:
oref0-append-local-temptarget 130 60

To set an eating soon mode target of 80 mg/dL for 30m, run:
oref0-append-local-temptarget 80 30

SSH Login Speedup

To speed up the command execution you can add to the /etc/ssh/sshd_config the following line:
UseDNS no

Accessing your offline rig via SSH over Bluetooth

Your phone and rig must be BT paired and connected over BT PAN. See https://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/bluetooth-tethering-edison.html for BT PAN configuration. When you first open Termius on your mobile device (JuiceSSH and SimpleSSH are also good choices) it will prompt you to add a new host. Click the + button to add a new host. Turn the toggle on for Use SSH and then fill out the following information:

Alias – use an alias name that let’s you know which rig and which connection point this host is for, for example YourRigName on device BT
Hostname – Enter the IP address of the rig as assigned by your BT PAN
Username – click to the left of the little blue man and type root
Password – Enter your rig’s root password (default is “edison” but you should have changed it during setup)

Click Save in the upper right corner. You should now see the host you just created. If you click on that host, you’ll see a message that it is connecting (first time connections will ask if you want to save the rig to known hosts, cick continue and then you’ll be connected to a terminal app screen. You can now issue commands and edit files just like you can over an SSH connection from your computer.

Accessing your offline rig via SSH when your phone and rig are connected to the same network

Just like the trick for getting internet to your rig through a network that requires you to log in via a portal (a “captive” network), a mobile router (e.g. HooToo [https://www.hootoo.com/network-devices.html]) or other brand) can create a network that allows your phone and rig both to be connected, allowing you to then SSH into your rig, just as if they were connected via cellular.

You can then use the same methods to SSH in for the phone or computer (that you’re using to SSH) being on the same network as the rig [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#accessing-your-online-rig-via-ssh].

Note: you will want to set your mobile router up in advance, and give it the same network name and password as a network already on your rig; or otherwise make sure to add the network and password to your rig before you travel and want to use this offline.

Generally, the steps for getting online with the HooToo, which you should practice with before you travel:

	Plug in the HooToo/turn it on.

	Use your phone or computer and join the HooToo network.

	If you plan to loop offline and just want to SSH in, you should be able to SSH in and see your logs.

For using the HooToo to join plane or hotel wifi, after you’ve joined the HooToo router network:

	Open a browser and type in a URL (e.g. cnn.com) and hit enter. This should redirect you to the HooToo log in page.

	Follow your router’s instructions for how to get to the network page and scan and click to join the right network.

	Open another tab, type a URL again (e.g. cnn.com) and hit enter. This should take you to the login page (e.g. GoGo or the captive portal of the hotel wifi). Input your credentials or otherwise log in. Once you’re successfully through that step, the router is online and will begin sharing the internet connectivity with the other devices that are joined to the network.

Offline web page from rig - for any phone user

Starting with oref0 0.6.1, you can enable a rig hosted offline webpage that can be accessed over a local LAN. To do this, simply open a web browser and go to your rig’s IP address. In most cases, this will be in the format 192.168.x.x

[image: Successful pump-loop] [image: Unsuccessful pump-loop]

The box around your current BG will be either green or red, depending on the last time OpenAPS was able to successfully complete a pump-loop. The box functions similarly to the OpenAPS pill in Nightscout. If you tap on it, you will be able to view more info about the current state of your rig and its decision making process.

[image: Offline webpage OpenAPS pill]

NOTE: If the webpage does not load, check your crontab. On master (oref0 version 0.6.x) your crontab should contain the line @reboot cd ~/src/oref0/www && export FLASK_APP=app.py && flask run -p 80 --host=0.0.0.0 You can check this by logging into your rig and typing crontab -l. If you need to edit your crontab the command is crontab -e.

Old instructions for an offline webpage. It is HIGHLY recommended that you use the method above for oref0 0.6.0 or greater.

TODO - implement this as a proper oref0 script that can be installed by oref0-setup

This allows you to extract data from the various files that OpenAPS creates and access the locally from the phone that is connected to the rig, giving a full information set.

A. First, you need to set up the script that will do this for you. An example is shown below:

rm ~/myopenaps/enact/index.html
touch ~/myopenaps/enact/index.html

(cat ~/myopenaps/enact/smb-enacted.json | jq -r .timestamp | awk '{print substr($0,12,5)}') >> ~/myopenaps/enact/index.html

(cat ~/myopenaps/enact/smb-enacted.json | jq -r .reason) >> ~/myopenaps/enact/index.html
(echo -n 'TBR: ' && cat ~/myopenaps/enact/smb-enacted.json | jq .rate) >> ~/myopenaps/enact/index.html
(echo -n 'IOB: ' && cat ~/myopenaps/enact/smb-enacted.json | jq .IOB) >> ~/myopenaps/enact/index.html
(echo -n 'Edison Battery: ' && cat ~/myopenaps/monitor/edison-battery.json | jq -r .battery | tr '\n' ' ' && echo '%') >> ~/myopenaps/enact/index.html
(echo -n 'Insulin Remaining: ' && cat ~/myopenaps/monitor/reservoir.json) >> ~/myopenaps/enact/index.html

Create the above script by running nano /root/myopenaps/http.sh , then paste the above, and save it.

You may need to adjust the values in '{print substr($0,12,5)}' - whilst I know these work on the rigs I have set them up on, other’s have had better results with {print substr($0,13,5)}'

B. You will also need to start up the SimpleHTTPserver service that is already installed on jubilinux in the location you will place your file. This is done by adding the following line to your Cron (refer to the resources [http://openaps.readthedocs.io/en/latest/docs/Resources/index.html] section for help on editing crontabs):

@reboot cd /root/myopenaps/enact && python -m SimpleHTTPServer 1337

The final thing to do is to make sure the script runs regularly to collect the data and publish it. This requires an additional cron line:

*/5 * * * * (bash /root/myopenaps/http.sh) 2>&1 | tee -a /var/log/openaps/http.log

In this case the script is running from the /root directory and I am publishing to the ~/myopenaps/enact directory.

C. Accessing via your phone

IPHONE USERS: To access this from an iphone browser, enter something like the following: http://172.20.10.x:1337/index.html and you should receive an unformatted html page with the data in it. The value you need will be the ip address you see when you first set up bluetooth on your rig, and can be found using ifconfig bnep0 when your rig is connected to your phone via bluetooth. If you want to improve the output for a browser, the script can be modified to generate html tags that will allow formatting and could provide colouring if various predicted numbers were looking too low.

ANDROID USERS: On Android, you can download http-widget [https://play.google.com/store/apps/details?id=com.axgs.httpwidget&hl=en_US] and add a widget to your home screen that will display this data. You will need the IP address that your rig uses. If you are using xdrip as your glucose data source, it is the same as the value you use there.

SAMSUNG GEAR S3 WATCH USERS: If you use a Samsung Gear S3 watch, you can use the above http-widget with Wearable Widgets [http://wearablewidgets.com] to view what OpenAPS is doing locally, without internet connection.

Prev.: Understanding the determine-basal logic

Next: Understanding your preferences and safety settings

​

 Understanding your preferences and safety settings

Understanding your preferences and safety settings

All of the settings specific to OpenAPS (that can’t be read from the pump) will live in this file, so when running the setup scripts or building your loop, you will have the preferences.json file built for the system to read, in addition to your pump profile settings. Many of these are important safety settings, with reasonable default settings, so other than described below, you likely won’t need to adjust these. If you do decide to adjust a setting, the best practice is to adjust one setting at a time, and observe the impact for 3 days. Changing multiple variables at once is a recipe for a lot of headaches and a lot of painful troubleshooting.

(Note that there are some preferences that show up by default; these are the most commonly adjusted. There are additional preferences available to set that are not used by everyone, and are described below - any of these can also be added to the preferences.json)

Click here to expand a clickable list to jump to each preference:

 Understanding your wifi options

Understanding your wifi options

If you want to keep your rig small and portable, using the internet will be important (assuming you are using a Dexcom CGM) to keep BG values flowing to the loop. Ways your rig can stay online and access the internet are:

	Joining known wifi networks (you’ll be able to add more wifi networks to your rig in the future) [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/on-the-go-wifi-adding.html]

	BT-tethering to your cell phone’s hotspot

	Wifi-tethering to your cell phone’s hotspot

	Wifi-tethering to mifi device

By default, the rig’s programming in OpenAPS is to prefer joining known wifi connections over BT-tethered connections. Basically, the rig will look every minute to see if a wifi connection is available. If it is, the rig will connect to that. When a wifi connection is unavailable, the rig will attempt to BT-tether to your phone’s hotspot (assuming you have done the work to pair the two devicecs as part of your rig’s setup).

Most users prefer a combination of known wifi networks and BT-tethering to maintain internet access for their rig. This minimizes cell phone data use while at the same time requiring no intentional action on the user’s part when they enter/leave their known network areas. The rig will move seamlessly off/on known networks and BT-tethers without needing help. Using wifi-tethers requires the user to manually turn the connections on/off when they get into the range of a preferred wifi network to save cell data, therefore those connections aren’t preferred.

These helpful mobile apps [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/useful-mobile-apps.html] are worth checking out, as they’ll aid you with accessing your rig when it gets connected online.

Home Wifi

If your home wifi is flaky, your OpenAPS looping will likely be flaky as well. Speed isn’t super important, but reliability of uptime is. If your router is old and hasn’t been updated in awhile, simply updating your router may be a good idea. Routers are about $100 for a new, well-featured router. If you get your router as part of a package from your ISP, you can ask if they have any updated equipment to improve your home wifi network’s stability. Many ISPs tend to forget about their customers’ old equipment until they start complaining about it.

Home router

Have you ever accessed your home wifi’s router to see the devices connected to it? How about to make adjustments to your firewall if one is installed? I highly recommend becoming familiar with logging into your home router...this will let you quickly see (1) if your rig is successfully connected to your home wifi and (2) the MAC address and IP address of your rig.

NOTE IP addresses are assigned to the rig by the device providing the internet access. So when the rig is on your home wifi network, the IP address is assigned by your home’s router. When the rig is on your phone’s hotspot, the IP address is assigned by your phone. The private IP addresses for a wifi network will generally be in the format of 192.168.1.XX or 10.10.1.XX and the private IP addresses for a phone hotspot will generally be in the format of 172.20.10.XX The last two digits will not always be the same every time your rig connects. Most routers, however, will allow you in the Advanced Settings section to configure your LAN settings to always give your rig the same IP address. If you find that you cannot access your rig sometimes, it is a good practice to check if maybe the IP address of the rig has changed since the last time you looked and consider setting your router to assign the rig the same IP address each time.

Most home routers can be accessed by going to the URL http://192.168.1.1 on your computer’s browser while it is connected to the home wifi. Alternatively, check your router for a sticker that includes information about logging into the router (most include a sticker on the bottom of the router). If there is no sticker, and the URL doesn’t work, try googling your router’s manufacturer and model number for login information. Each manufacturer usually has a different combination of default user names and logins, for example:

	NetGear routers have user name as admin and password is password

	Linksys routers have no user name and password is admin

	Asus routers have a default for both user and password of admin

By having access to your home router, you can easily see if you rig is listed as a connected device. You can also bring up the MAC address and IP address of the rig, which may be helpful in other areas of the rig setup that are discussed later.

[image: Home Router]

School wifi networks

School districts vary widely in their wifi structure and access. Start talking to your school district’s IT department well in advance of looping to discuss options for the rig’s access to school wifi.

If you are sending your t1d kid to school with an OpenAPS rig, getting on the school’s wifi network will save you cell phone data and phone battery. Some school districts will need the MAC address of the rig to add it to their “approved” devices list. Other school districts may provide a special login for the rig.

If the school district refuses to allow the rig access to the school’s wifi network, you can use BT tethering to your phone’s hotspot to stay online while at school. The downside is that you will be using your cell data during the school day and it will cause added drain on the phone’s battery.

In some cases, schools have let the phone on the school’s wifi but not the rig. Unfortunately though, this won’t help much if your kid uses an iPhone. IPhones do not allow the rig to be on the phone’s hotspot while the phone is also on school’s wifi. So, when the rig connects to the iPhone, the iPhone will disconnect from the school’s wifi. Androids (some of them at least) are able to maintain a wifi connection while the rig is tethered to its hotspot.

Mifi device

If the school won’t allow rig’s wifi access, or you can’t get your rig to use your phone’s hotspot, you could use a mifi device through your cell provider. The mifi is a small box (about half the size of a dex receiver usually) that projects a wifi signal using your cellular data plan. If you use a mifi, the phone could stay connected to the school’s wifi and the rig could stay connected to the mifi.

One downside of a mifi box, however, is that since the rig is using a wifi-tethered connection to the mifi box...the rig will stay connected until you turn the mifi box off. When your kid (and rig) comes back into a known wifi network, your rig will not necessarily automatically move to the known wifi network from the mifi box. And of course, it’s another device to carry.

Known wifi networks

You will want to prepare ahead of your rig-build by gathering the wifi network names and passwords from areas that you will be at frequently (home, friends’ houses, work, etc). By adding known wifi networks to your your rig’s setup, you can save from using your cellular data plan to keep your rig running. As you are gathering the network names and passwords, remember to pay attention to lower vs upper case letter, hypens, or special characters. If the names and passwords do not match exactly, the rig will not be able to connect to the network.

Unknown wifi networks

Unknown wifi networks are pretty frequent during travel. These can be hit or miss for rig connectivity. Networks that require you to click on a terms and conditions (like Starbucks) or enter a last name/room number (like many hotels) will not work for the rig. Sometimes though, you’ll get lucky and a hotel will have an open, easy wifi network. There’s a section later about how to add wifi networks while you are traveling.

Prev.: Understanding your preferences and safety settings

Next: Installing OpenAPS on your rig

​

 Installing OpenAPS on your rig

Installing OpenAPS on your rig

Getting your rig with OpenAPS takes generally six steps:

	Jubilinux installation (called “flashing” the Edison - Pi users can skip to step 2)

	Getting first wifi network connection

	Installing “dependencies” (helper code that make all the OpenAPS code function)

	Installing your OpenAPS loop

	Watching Pump-loop Log

	Finish your setup

	The first step may already be done for you if you purchased a pre-flashed Edison board.

	The second and third steps are accomplished through what is called the “bootstrap” script.

	The fourth step is accomplished through what is called the “setup script”.

	The fifth step is an important, required step. You need to be familiar with how to read and access your logs.

	The sixth step is all the polishing steps to your OpenAPS setup. Things like optimizing your settings, preferences, BT-tethering, IFTTT, etc.

Step 1: Jubilinux (for Edison rigs only)

Pi users can skip to step 2 [http://openaps.readthedocs.io/en/latest/docs/Build%20Your%20Rig/OpenAPS-install.html#steps-2-3-wifi-and-dependencies]

If you purchased a pre-flashed Edison, you can also skip on down to step 2 [http://openaps.readthedocs.io/en/latest/docs/Build%20Your%20Rig/OpenAPS-install.html#steps-2-3-wifi-and-dependencies].

If you need to flash your Edison, the directions are slightly different depending on the computer you are using. Please see the Mac-specific flashing page [http://openaps.readthedocs.io/en/latest/docs/Resources/Edison-Flashing/mac-flash.html] or the Windows-specific flashing page [http://openaps.readthedocs.io/en/latest/docs/Resources/Edison-Flashing/PC-flash.html] for detailed info on how to flash jubilinux. There is also a more general flashing page here [http://openaps.readthedocs.io/en/latest/docs/Resources/Edison-Flashing/all-computers-flash.html] that has some good troubleshooting tips [http://openaps.readthedocs.io/en/latest/docs/Resources/Edison-Flashing/all-computers-flash.html#troubleshooting] at the end of the page, if you flashing stalls out.

Steps 2-3: Wifi and Dependencies

Steps 2-3 are covered in the page links below, dependent on which type of rig you are using.

	If you are using an Intel Edison, start with the Intel Edison instructions.

	If you are using a Raspberry Pi, start with the Raspberry Pi instructions.

Going through steps 1-3 may take about 1-3 hours depending on your internet connection, whether the edison was pre-flashed, and comfort level with the instructions. At the end of the bootstrap script (step 3), you will be asked if you want to continue on with the set-up script (step 4). If you need to take a break and come back to step 4 later, you can answer “no” to continuing on and come back later...picking up at the directions below for running the setup script.

Step 4: Setup script

	If you pressed enter to continuing on with the setup script at the end of the bootstrap script, you do NOT need to specifically enter the command in the box below. By pressing enter to continuing on with setup script, the command was automatically started for you.

	If you pressed control-c to end at the completion of the bootstrap script and did not continue automatically with setup script, this is where you’ll pick back up. At this point, your rig should have your first wifi connection finished and your dependencies installed.

Login to your rig and run the following command (aka “the setup script”):

cd && ~/src/oref0/bin/oref0-setup.sh

(Note: if this is your first time logging into the rig since running bootstrap script, you will have to change your rig’s password on this first login. You will enter the default password first of edison and then be prompted to enter your new password twice in a row. If you get an error, you likely forgot to enter edison at the first prompt for changing the password.)

Be prepared to enter the following information into the setup script:

The screenshot below shows an example of the questions you’ll be prompted to reply to during the setup script (oref0-setup). Your answers will depend on the particulars of your setup. Also, don’t expect the rainbow colored background - that’s just to help you see each of the sections it will ask you about!

Be prepared to enter the following items (click here to expand list):

 So you think you’re looping? Now keep up to date!

So you think you’re looping? Now keep up to date!

If you’ve gone “live” with your loop, congratulations! You’ll probably want to keep a very close eye on the system and validate the outputs for a while. (For every person, this amount of time varies).

One important final step, in addition to continuing to keep an eye on your system, is letting us know that you are looping.

This is important in case there are any major changes to the system that we need to notify you about. One example where this was necessary is when we switched from 2015 to 2016: the dates were incorrectly reporting as 2000, resulting in incorrect IOB calculations. As a result, we needed to notify current loopers so they could make the necessary update/upgrade.

After you have looped for three consecutive nights:

So that we can notify you if necessary, please fill out this form if you have been looping for 3+ days [http://bit.ly/nowlooping]. Your information will not be shared in any way. You can indicate your preferred privacy levels in the form. As an alternative, if you do not want to input info, please email dana@openaps.org. Again, this is so you can be notified in the case of a major bug find/fix that needs to be deployed.

Note: you only ever need to fill this form out once. If you’re building multiple rigs, or switching between DIY systems, no need to fill this out multiple times. We’re just counting - and wanting to connect with in terms of safety announcements - humans. :)

Prev.: Installing OpenAPS on your rig

Next: Optimizing your settings

​

 Optimizing your settings

Optimizing your settings

Once you’ve been looping, you may look at your graphs and wonder how to achieve different results. It takes some time to do, but optimizing your settings is one of the keys to improving things, once you have basic looping up and running.

Note: if you’re not familiar with the approach of optimizing settings, it’s very important to understand that you should only change ONE thing at a time, and observe the impact for 2-3 days before choosing to change or modify another setting (unless it’s obviously a bad change that makes things worse, in which case you should revert immediately to your previous setting). The human tendency is to turn all the knobs and change everything at once; but if you do so, then you may end up with further sub-optimal settings for the future, and find it hard to get back to a known good state.

Think about this: when many people start looping, they often have too high basal and too low carb ratio or ISF. What this means is they’re using basal insulin around mealtimes to compensate for not usually giving the amount of insulin needed for food. When you go on a DIY closed loop and the system begins to help with adjusting insulin for BGs, it can become apparent that settings need to be tweaked. Here are a series of general approaches you can take for optimizing your settings, with example patterns:

Using Autotune

The most powerful tool at your disposal for adjusting settings is Autotune, which you can run nightly as part of your loop, and which will automatically start adjusting your basals, carb ratio, and ISF based on observed trends. If your pump settings are too far from what autotune thinks is necessary, it won’t be able to adjust further without some manual action on your part, so you’ll want to review autotune’s recommendations periodically and consider adjusting pump settings in the recommended direction. As noted before, it’s best to change things gradually, and observe the results before changing additional settings.

In oref0 0.6.0 and beyond, autotune runs every night on your rig automatically. You can cat-autotune to view your autotune recommendations log. (More about Autotune in the docs here [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/autotune.html].)

Frequent negative IOB at the same time every day

Negative IOB happens when you are getting less insulin than your normal basal amount. We created Autotune [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/autotune.html] to help deal with these situations and to automatically tune your basal rates for any recurring patterns where you need more or less basal. However, if you’re not running autotune, and you’re observing patterns of negative IOB (for more than a day or two in a row), indicating a trend, you may need to change your settings. Things to test include:

	Adjusting your DIA. In oref0 0.6.0 and beyond, it will default to using a DIA of 5, unless the value is set higher in the pump. It is also very common for OpenAPS users to have DIA of 6 or 7 set in their pump.

	Basal rates are too high for the hours preceding the pattern of negative IOB.

	ISF is wrong. (Usually not this; start with testing and tweaking basals and DIA first.)

Hills and valleys / Peaks and troughs / Up and down patterns

Sometimes people observe “roller coasters” in their BG graph. Remember this is all relative - to different people, BG rising and falling by 20 points may or may not be a big deal (but a 50 point rise or drop might feel like a roller coaster).

First, you should eliminate human behaviors that cause these. Usually, it’s things like giving a traditional dose of “fast carbs” (such as 15g+ of sugar, glucose tabs, candy, etc.) that is more than needed for a low or a pending low. Remember the system is reducing insulin, and so you often need way fewer carbs to deal with a low, so you may rise afterward if you do too large of a carb correction. If you’re unsure how large a carb correction is needed, OpenAPS has the ability to send carbsReq notifications via Pushover. Overcorrections like that generally can’t be fixed by changing settings: you have to also change behaviors. Ditto for human-driven drops; e.g. by rage bolusing or otherwise bolusing too much when BG is high. A better approach is to set a low temporary target, which asks OpenAPS to do “more”, but will still keep you in a safe range.

Human behaviors set aside, if you are still seeing hills and valleys in your BG graphs, consider the following:

	ISF may be off, so you may want to raise ISF to make corrections less aggressive. Remember, make small changes (say, 2-5 points for mg/dl, and .5 or less for mmol) and observe over 2-3 days. Before changing ISF or any other setting, check to see what autotune recommends.

	If you’re seeing highs followed by lows after meals, CR may need adjusting. One common mistake is to compensate for rapid post-meal rises with a very aggressive (low) CR, which then causes subsequent low BG. One tool for preventing meal spikes include setting an “eating soon” low temp target before and/or right after a meal, to get more insulin started earlier, and then allow OpenAPS to reduce insulin once the temp target expires, to help prevent a post-meal low. Similarly, a small manual “eating soon” bolus up to an hour before a meal, or a larger prebolus right before a fast-carbs meal, can help match insulin timing to carb absorption without increasing the total amount of insulin delivered (and subsequently causing a post-meal low). (Here are some tips on using temp targets [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/usability-considerations.html#how-can-you-make-adjustments-to-insulin-delivery-while-on-the-go-optimizing-with-temporary-targets], and you can use IFTTT to make it easy to enter them from your phone or watch or device of choice [http://openaps.readthedocs.io/en/latest/docs/Customize-Iterate/ifttt-integration.html].)

Prev.: So you think you’re looping? Now keep up to date!

Next: Offline looping - aka, running OpenAPS without internet connectivity

​

 Offline looping - aka, running OpenAPS without internet connectivity

Offline looping - aka, running OpenAPS without internet connectivity

There are a number of ways to have an “offline” OpenAPS rig, and numerous ways to monitor offline (see the monitoring section for information about monitoring offline [http://openaps.readthedocs.io/en/latest/docs/While%20You%20Wait%20For%20Gear/monitoring-OpenAPS.html#the-main-ways-of-monitoring-your-rig-offline-include]). Offline refers to situations where your rig moves into an area where it does not have internet access (i.e., the rig does not have a known WiFi network available and the cell phone used with the rig does not have cell coverage/hotspot available). By setting up one of these offline solutions, your rig can still loop while in an offline area. Depending on the setup, the opportunities to visualize or monitor the loop actions (e.g., check what temp basal is actually being set) may vary until you can get back into an online area.

NOTE: TRY BEFORE YOU FLY! Remember this when you decide to use an offline looping method for the first time - try it before you go offline for the situation in which you likely need it (e.g. flying, camping, hiking, etc.). Sometimes there’s something small and easy like remembering to plug a secondary power source to your rig that can make your offline looping method work, but you’ll forget on your first try - so try before you go!

Medtronic CGM users

Medtronic CGM users can, by default, automatically loop offline because the rig will read CGM data directly from the pump.

Note about recovery from Camping Mode/Offline mode for Medtronic CGM users:

If you have been running offline for a significant amount of time, and use a Medtronic CGM, you may need to run

openaps first-upload

from inside your openAPS directory, before your loop will start updating correctly to your nightscout site.

Dexcom CGM users

Dexcom CGM users have a few different alternatives to retrieve blood glucose values locally for offline use. The op